Journal of Nanoparticle Research

, Volume 6, Issue 4, pp 407–410 | Cite as

Growth of InGaAs-capped InAs quantum dots characterized by Atomic Force Microscope and Scanning Electron Microscope

  • Shen-de Chen
  • Chiou-yun Tsai
  • Si-chen Lee


Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of InxGa1-xAs cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.

InAs quantum dot atomic force microscope scanning electron microscope phase separation surface science 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alessi M.G., M Capizzi., A.S Bhatti & A. Frova, 1999. Phys. Rev. B 59, 7620.Google Scholar
  2. Chang S.Z., T.C. Chang., J.L.Shen, S.C.Lee & Y.F. Chen, 1993. J. Appl. Phys. 74, 6912.Google Scholar
  3. Chang S.Z., T.C. Chang., S.C. Lee, 1996. Appl. Surf. Sci. 92, 70.Google Scholar
  4. Chang F.Y., C.C. Wu & H.H. Lin, 2003. Appl. Phys. Lett. 82, 4477.Google Scholar
  5. Chen S.-D., Chiou-Yun Tsai & Si-Chen Lee, Proceedings 2002 2nd IEEE Conference on Nanotechnology, pp. 341.Google Scholar
  6. Chu L., M. Arzberger., G. Bohm & G. Abstreiter, 1999. J. Appl. 85, 2365.Google Scholar
  7. Lin S.-Y., Y.-R. Tsai & S.-C. Lee 2001. Appl. Phys. Lett. 78, 2784.Google Scholar
  8. Maximov M.V., A.F. Tsatsul'nikov., B.V. Volovik., D.S. Sizov, Yu.M. Shernyakov., I.N. Kaiander., A.E. Zhukov., A.R. Kovsh., S.S. Mikhrin, V.M. Ustinov., Zh.I. Alferov., R. Heitz., V.A. Shchukin., N.N. Ledentsov., D. Bimberg., Yu.G. Musikhin., & W. Neumann 2000 Phys. Rev. B 62, 16671.Google Scholar
  9. Schmidt K.H., G. Medeiros-Ribeiro., U. Kunze 1998 G. Abstreiter, M. Hagn & Petroff P.M. J. Appl. Phys. 84, 4268.Google Scholar
  10. Schmidt K.H., Medeiros-Ribeiro G., Garcia J., & Petroff P.M. 1997. Appl. Phys. Lett. 70, 1727.Google Scholar
  11. Tang S.-F., S.-Y. Lin & S.-C. Lee 2001. Appl. Phys. Lett. 78, 2428.Google Scholar
  12. Ustinov V.M., N.A. Maleev, A.E. Zhukov, A.R. Kovsh, Yu.A. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Yu G. Musikhin, N.A. Bert, P.S. Kop'ev, Zh.I. Alferov, N.N. Ledentsov, & Bimberg D. 1999 Appl. Phys. Lette. 74, 2815.Google Scholar
  13. Xie Q., A. Kalburge, P. Chen, & Madhukar A. 1996. IEEE Photonics Technol. Lett. 8, 965.Google Scholar
  14. Yeh N.T., T.E. Nee, J.I. Chyi, C.T. Chia, T.M. Hsu & C.C. Huang 2001. J. Cryst. Growth 227–228, 1044.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Shen-de Chen
    • 1
  • Chiou-yun Tsai
    • 1
  • Si-chen Lee
    • 1
  1. 1.Department of Electrical Engineering, Graduate Institute of Electronics EngineeringNational Taiwan UniversityRepublic of China

Personalised recommendations