GSA improvement via the von Neumann stability analysis

Abstract

The performance of the Gravitational Search Algorithm (GSA) depends on the gravitational constant G, which controls the balance of exploration and exploitation abilities. Improving the setting of this parameter has attracted many researchers. In this paper, we analyzed the GSA stability using the von Neumann stability criterion. First, we modeled the iterative process by a second-order differential equation and derived the first and second-order stability conditions. Then, based on these criteria, we suggested a new law to adjust the initial value of the parameter G, depending on the distance between objects and then on the search space. Some supporting simulations were carried out using different update laws of the gravitational constant (e.g., exponential, log-sigmoid, linear, and chaotic) on CEC 2017 benchmark functions in different search space dimensions. The achieved results show that the new setting leads to significantly better outcomes in high-dimensional search spaces (greater than 20). A comparison with other metaheuristics (Particle Swarm Optimization, Artificial Bee Colony, and Grey Wolf Optimizer) reveals that the new setting proffers GSA competitiveness. Tests on 23 real-world problems (CEC 2011 benchmark problems and the iron ores sintering problem) further proved all the merits of the proposed parameter setting.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akay B, Karaboga D (2009) Parameter tuning for the artificial bee colony algorithm. In: Nguyen NT, Kowalczyk R, Chen SM (eds) International Conference on Computational Collective Intelligence Lecture Notes in Computer Science. Springer, Berlin

    Google Scholar 

  2. Awad NH, Ali MZ, Liang JJ, Qu BY, Suganthan PN (2016) Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization. Technical report, IEEE

  3. Bansal JC, Gopal A, Nagar AK (2018) Stability analysis for artificial bee colony optimization algorithm. Swarm and Evolut Comput 41:9–19

    Article  Google Scholar 

  4. Bayraktar Z, Komurcu M, Werner DH (2010) Wind driven optimization (WDO): a novel nature–inspired optimization algorithm and its application to electromagnetics. In: 2010 IEEE Antennas and Propagation Society International Symposium 1–4

  5. Birbil S, Fang SC (2003) An electromagnetism-like mechanism for global optimization. J Global Optim 25(3):263–282

    MathSciNet  Article  Google Scholar 

  6. Cleghorn WC, Engelbrecht AP (2017) Particle swarm stability: a theoretical extension using the non-stagnate distribution assumption. Swarm Intell 12(1):1–22

    Article  Google Scholar 

  7. Das S, Suganthan P (2010) Problem definitions and evaluation criteria for cec 2011 competition on testing evolutionary algorithms on real world optimization problems. Technical report, IEEE

  8. de Moura Oliveira PB, Oliveira J, Cunha JB (2017) Trends in gravitational search algorithm. In:Distributed Computing and Artificial Intelligence, 14th International Conference 260: 270–277

  9. Elsayed S, Sarker R, Essam D (2011a) https://www3.ntu.edu.sg/home/epnsugan/index_files/CEC11-RWP/Results-of-GA-MPC-SAMODE.pdf. Accessed: 2020-07-10

  10. Elsayed S, Sarker R, Essam D (2011b) GA with a new multi-parent crossover for solving IEEE–CEC2011 competition problems. In: 2011 IEEE Congress on Evolutionary Computation (CEC) 1034–1040

  11. Farivar F, Shoorehdeli MA (2016) Stability analysis of particle dynamics in gravitational search optimization algorithm. Inf Sci 337:25–43

    Article  Google Scholar 

  12. Formato AR (2008) Central force optimization: a new nature inspired computational framework for multidimensional search and optimization in nature inspired cooperative strategies for optimization Spinger, US

  13. García-Ródenas R, Jiménez Linares L, López-Gómez JA (2019) A memetic chaotic gravitational search algorithm for unconstrained global optimization problems. Appl Soft Comput J 79:14–29

    Article  Google Scholar 

  14. Garg H (2019) A hybrid GSA-GA algorithm for constrained optimization problems. Inf Sci 478:499–523

    Article  Google Scholar 

  15. Ghorbani F, Nezamabadi H (2012) On the convergence analysis of gravitational search algorithm. Adv Comput Res 3(2):45–51

    Google Scholar 

  16. González-Álvarez D, Vega-Rodríguez M, Gómez-Pulido J, Sánchez-Pérez J (2011) Applying a multiobjective gravitational search algorithm (MO-GSA) to discover motifs. In: International Work-Conference on Artificial Neural Networks IWANN 2011: Advances in Computational Intelligence 6692: 372–379

  17. Gupta C, Jain S (2014) Multilevel fuzzy partition segmentation of satellite images using GSA. In: Signal Propagation and Computer Technology (ICSPCT) International Conference 173–178

  18. Han L, Qian W (2015) Analysis on stability conditions for the gravitational search algorithm. In: 11th International Conference on Natural Computation (ICNC) 462–467

  19. Harrison KR, Engelbrecht AP, Ombuki-Berman BM (2018) Optimal parameter regions and the time–dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evolut Comput 41:20–35

    Article  Google Scholar 

  20. Hirsch C (2007) Numerical Computation of Internal and External Flows: Fundamentals of Computational Fluid Dynamics. Wiley, NJ

    Google Scholar 

  21. Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62:242–253

    Article  Google Scholar 

  22. Ji J, Gao S, Wang S, Tang Y, Yu H, Todo Y (2017) Self-adaptive gravitational search algorithm with a modified chaotic local search. IEEE Access 5:17881–17895

    Article  Google Scholar 

  23. Jiang J, Jiang K, Meng X, Li K (2020) A sine chaotic gravitational search algorithm for continuous optimization problems. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2019.113118

    Article  Google Scholar 

  24. Jiang S, Wang Y, Ji Z (2014) Convergence analysis and performance of an improved gravitationalsearch algorithm. Appl Soft Comput 24:363–384

    Article  Google Scholar 

  25. Kang F, Li J, Ma Z (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531

    MathSciNet  Article  Google Scholar 

  26. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech. Rep. tr06, Erciyes University

  27. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Article  Google Scholar 

  28. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE International Conference on Neural Networks, Perth, Australia 4: 1942–1948

  29. Kumar JV, Kumar DV, Edukondalu K (2013) Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market. Appl Soft Comput 13(5):2445–2455

    Article  Google Scholar 

  30. Li C, Li H, Kou P (2014) Piecewise function based gravitational search algorithm and its application on parameter identification of AVR system. Neurocomputing 124:139–148

    Article  Google Scholar 

  31. Li C, Chang L, Huang Z, Liu Y, Zhang N (2016) Parameter identification of a nonlinear model of hydraulic turbine governing system with an elastic water hammer based on a modified gravitational search algorithm. Eng Appl Artif Intell 50:77–191

    Google Scholar 

  32. Li X, Wang J, Zhou J, Yin M (2010) An effective gsa based memetic algorithm for permutation flow shop scheduling. In: IEEE Congress on Evolutionary Computation 1–6

  33. Long W, Wu T, Liang X, Xu S (2019) Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst Appl 123:108–126

    Article  Google Scholar 

  34. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

    Article  Google Scholar 

  35. Mirjalili S, Gandomi AH (2017) Chaotic gravitational constants for the gravitational search algorithm. Appl Soft Comput J 53:407–419

    Article  Google Scholar 

  36. Mirjalili S, Hashim SZM (2010) A new hybrid psogsa algorithm for function optimization. In: International Conference on Computer and Information Application 374–377

  37. Mirjalili S, Mohd Hashim SZ, Sardroudi HM (2012) Training feedforward neural network using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218:11125–11137

    MathSciNet  MATH  Google Scholar 

  38. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  39. Rashedi E, Nezamabadi H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  Google Scholar 

  40. Rashedi E, Nezamabadi H, Saryazdi S (2010) BGSA binary gravitational search algorithm. Nat Comput 9:727–745

    MathSciNet  Article  Google Scholar 

  41. Rashedi E, Rashedi E, Nezamabadi H (2018) A comprehensive survey on gravitational search algorithm. Swarm Evolut Comput 41:141–158

    Article  Google Scholar 

  42. Richtmyer RD, Morton KW (1967) Difference methods for initial value problems (tracts in pure and applied mathematics). Wiley, NJ

    Google Scholar 

  43. Soleimanpour-Moghadam M, Nezamabadi-pour H, Farsangi MM (2014) Quantum inspired gravitational search algorithm for numerical function optimization. Inf Sci 267:83–100

    MathSciNet  Article  Google Scholar 

  44. Sun G, Ma P, Ren J, Zhang A, Jia X (2018) A stability constrained adaptive alpha for gravitational search algorithm. Knowl-Based Syst 139:200–213

    Article  Google Scholar 

  45. Wang J, Qiao F (2014) Cost and energy consumption collaborative optimization for sintering burdening in iron and steel enterprise. In:2014 IEEE International Conference on Automation Science and Engineering (CASE) 486–491

  46. Wang Y, Hu Q (2018) Research and application of optimization method for iron and steel sintering ingredients. In: 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) 1819–1823. https://doi.org/10.1109/IAEAC.2018.8577612

  47. Wang Y, Zeng JC, Cui ZH, He XJ (2001) A novel constraint multi-objective artificial physics optimization algorithm and its convergence. Int J Innov Comput Appl 3(2):61–70

    Article  Google Scholar 

  48. Wang Y, Yu Y, Gao S, Pan H, Yang G (2019) A hierarchical gravitational search algorithm with an effective gravitational constant. Swarm Evolut Comput 46:118–139

    Article  Google Scholar 

  49. Warming RF, Hyett BJ (1974) The modified equation approach to the stability and accuracy analysis of finite–difference methods. J Comput Phys 14(2):159–179

    MathSciNet  Article  Google Scholar 

  50. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1: 67–82

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sameh Kessentini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naâs, I., Kessentini, S. GSA improvement via the von Neumann stability analysis. Nat Comput (2021). https://doi.org/10.1007/s11047-020-09833-z

Download citation

Keywords

  • Gravitational search algorithm
  • Gravitational constant
  • Metaheuristic algorithms
  • Parameter setting
  • Stability analysis