Skip to main content

Advertisement

Log in

Generation and robustness of Boolean networks to model Clostridium difficile infection

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

One of the more common healthcare associated infection is Chronic diarrhea. This disease is caused by the bacterium Clostridium difficile which alters the normal composition of the human gut flora. The most successful therapy against this infection is the fecal microbial transplant (FMT). They displace C. difficile and contribute to gut microbiome resilience, stability and prevent further episodes of diarrhea. The microorganisms in the FMT their interactions and inner dynamics reshape the gut microbiome to a healthy state. Even though microbial interactions play a key role in the development of the disease, currently, little is known about their dynamics and properties. In this context, a Boolean network model for C. difficile infection (CDI) describing one set of possible interactions was recently presented. To further explore the space of possible microbial interactions, we propose the construction of a neutral space conformed by a set of models that differ in their interactions, but share the final community states of the gut microbiome under antibiotic perturbation and CDI. To begin with the analysis, we use the previously described Boolean network model and we demonstrate that this model is in fact a threshold Boolean network (TBN). Once the TBN model is set, we generate and use an evolutionary algorithm to explore to identify alternative TBNs. We organize the resulting TBNs into clusters that share similar dynamic behaviors. For each cluster, the associated neutral graph is constructed and the most relevant interactions are identified. Finally, we discuss how these interactions can either affect or prevent CDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP (2013) Intestinal dysbiosis and depletion of butyrogenic bacteria in clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol 51(9):2884–2892

    Article  Google Scholar 

  • Aracena J, Goles E, Moreira A, Salinas L (2009) On the robustness of update schedules in boolean networks. Biosystems 97(1):1–8

    Article  Google Scholar 

  • Arias CA, Murray BE (2012) The rise of the enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10(4):266–278

    Article  Google Scholar 

  • Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A et al (2015) Precision microbiome reconstitution restores bile acid mediated resistance to clostridium difficile. Nature 517(7533):205–208

    Article  Google Scholar 

  • Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J, Pamer EG (2012) Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect Immun 80(1):62–73

    Article  Google Scholar 

  • Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal microbiome in recurrent clostridium difficile-associated diarrhea. J Infect Dis 197(3):435–438

    Article  Google Scholar 

  • Ciliberti S, Martin OC, Wagner A (2007a) Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci 104(34):13591–13596

    Article  Google Scholar 

  • Ciliberti S, Martin OC, Wagner A (2007b) Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput Biol 3(2):e15

    Article  MathSciNet  Google Scholar 

  • Ferrada E, Wagner A (2008) Protein robustness promotes evolutionary innovations on large evolutionary time-scales. Proc R Soc Lond B Biol Sci 275(1643):1595–1602

    Article  Google Scholar 

  • Goles E, Montalva M, Ruz GA (2013) Deconstruction and dynamical robustness of regulatory networks: application to the yeast cell cycle networks. Bull Math Biol 75(6):939–966

    Article  MathSciNet  Google Scholar 

  • Gordon JI (2012) Honor thy gut symbionts redux. Science 336(6086):1251–1253

    Article  Google Scholar 

  • Jörg T, Martin OC, Wagner A (2008) Neutral network sizes of biological rna molecules can be computed and are not atypically small. BMC Bioinform 9(1):464

    Article  Google Scholar 

  • Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome, and immune system: envisioning the future. Nature 474(7351):327

    Article  Google Scholar 

  • Kurten K (1988) Correspondence between neural threshold networks and kauffman boolean cellular automata. J Phys A Math Gen 21(11):L615

    Article  MathSciNet  Google Scholar 

  • Martin OC, Wagner A et al (2007) New structural variation in evolutionary searches of rna neutral networks. Biosystems 90(2):475–485

    Article  Google Scholar 

  • McInnes L, Healy J, Astels S (2017) hdbscan: hierarchical density based clustering. J Open Source Softw 2:205. https://doi.org/10.21105/joss.00205

    Article  Google Scholar 

  • Müssel C, Hopfensitz M, Kestler HA (2010) Boolnetan r package for generation, reconstruction and analysis of boolean networks. Bioinformatics 26(10):1378–1380

    Article  Google Scholar 

  • Ozaki E, Kato H, Kita H, Karasawa T, Maegawa T, Koino Y, Matsumoto K, Takada T, Nomoto K, Tanaka R et al (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol 53(2):167–172

    Article  Google Scholar 

  • Pérez-Cobas AE, Artacho A, Ott SJ, Moya A, Gosalbes MJ, Latorre A (2014) Structural and functional changes in the gut microbiota associated to clostridium difficile infection. Front Microbiol 5:335

    Google Scholar 

  • Pérez-Cobas AE, Moya A, Gosalbes MJ, Latorre A (2015) Colonization resistance of the gut microbiota against clostridium difficile. Antibiotics 4(3):337–357

    Article  Google Scholar 

  • Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB (2012) Suppression of clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family lachnospiraceae. Infect Immun 80(11):3786–3794

    Article  Google Scholar 

  • Robert F (2012) Discrete iterations: a metric study, vol 6. Springer, Berlin

    Google Scholar 

  • Rodriguez C, Taminiau B, Korsak N, Avesani V, Van Broeck J, Brach P, Delmée M, Daube G (2016) Longitudinal survey of clostridium difficile presence and gut microbiota composition in a belgian nursing home. BMC Microbiol 16(1):229

    Article  Google Scholar 

  • Rosenberg E, Sharon G, Atad I, Zilber-Rosenberg I (2010) The evolution of animals and plants via symbiosis with microorganisms. Environ Microbiol Rep 2(4):500–506

    Article  Google Scholar 

  • Ruz GA, Goles E (2012) Reconstruction and update robustness of the mammalian cell cycle network. In: IEEE symposium on computational intelligence in bioinformatics and computational biology (CIBCB), 2012, pp 397–403. IEEE

  • Ruz GA, Goles E (2013) Learning gene regulatory networks using the bees algorithm. Neural Comput Appl 22(1):63–70

    Article  Google Scholar 

  • Ruz GA, Goles E, Montalva M, Fogel GB (2014) Dynamical and topological robustness of the mammalian cell cycle network: a reverse engineering approach. Biosystems 115:23–32

    Article  Google Scholar 

  • Schubert E, Koos A, Emrich T, Züfle A, Schmid KA, Zimek A (2015) A framework for clustering uncertain data. PVLDB 8(12):1976–1979. URL http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf. Accessed 19 June 2017

    Article  Google Scholar 

  • Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, Sander C, Xavier JB (2013) Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput Biol 9(12):e1003388

    Article  Google Scholar 

  • Steinway SN, Biggs MB, Loughran TP Jr, Papin JA, Albert R (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11(6):e1004338

    Article  Google Scholar 

  • Wagner A (2013) Robustness and evolvability in living systems. Princeton University Press, Princeton

    Book  Google Scholar 

  • Walia R, Garg S, Song Y, Girotra M, Cuffari C, Fricke WF, Dutta SK (2014) Efficacy of fecal microbiota transplantation in 2 children with recurrent clostridium difficile infection and its impact on their growth and gut microbiome. J Pediatr Gastroenterol Nutr 59(5):565–570

    Article  Google Scholar 

  • Wuensche A (1999) Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the z parameter. Complexity 4(3):47–66. https://doi.org/10.1002/(SICI)1099-0526(199901/02)4:3<47::AID-CPLX9>3.0.CO;2-V

    Article  MathSciNet  Google Scholar 

  • Wuensche A, Lesser M (1992) Global dynamics of cellular automata: an atlas of basin of attraction fields of one-dimensional cellular automata. Andrew Wuensche, Reading

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Basal grant of the Center for Mathematical Modeling AFB170001 (UMI2807 UCHILE-CNRS), Center for Genome Regulation FONDAP 15090007 (D.T., M.C., M.L., A.M.), CONICYT PFCHA/Beca Doctorado Nacional 2015/FOLIO 21150895 (D.T.), FONDECYT 11150679 (M.L.), ECOS C16E01 (E.G.) and Internal Grant of the Universidad Adolfo Ibañez (E.G.). We also thank to the National Laboratory for High Performance Computing NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Travisany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3662 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travisany, D., Goles, E., Latorre, M. et al. Generation and robustness of Boolean networks to model Clostridium difficile infection. Nat Comput 19, 111–134 (2020). https://doi.org/10.1007/s11047-019-09730-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09730-0

Keywords

Navigation