Natural Computing

, Volume 17, Issue 2, pp 321–332 | Cite as

Some new results of P colonies with bounded parameters

  • Luděk Cienciala
  • Lucie Ciencialová


P colonies were introduced in 2004 as a type of abstract computing device evolved from membrane systems—a biologically motivated computational massive parallel model. A P colony is composed of independent one-membrane agents, reactively acting and evolving in a shared environment. In this paper we summarize the results of computational power obtained for P colonies with bounded number of agents and programs; we reduce these parameters and we also add new results for so-called homogeneous P colonies with capacity two and one.


P colonies Computational power Register machine 


  1. (2001) P systems web page.
  2. Cienciala L, Ciencialová L (2011) Computation, cooperation, and life. Springer-Verlag, Berlin, Heidelberg, chap P Colonies and Their Extensions, pp 158–169Google Scholar
  3. Cienciala L, Ciencialová L, Kelemenová A (2007) On the number of agents in P colonies. In: Proceedings of the 8th international conference on membrane computing, Springer-Verlag, Berlin, Heidelberg, WMC’07, pp 193–208Google Scholar
  4. Cienciala L, Ciencialová L, Kelemenová A (2008) Homogeneous P colonies. Comput Inform 27(3+):481–496MathSciNetMATHGoogle Scholar
  5. Csuhaj-Varjú E, Kelemen J, Kelemenová A (2006a) Computing with cells in environment: P colonies. Mult Valued Logic Soft Comput 12(3–4):201–215MathSciNetMATHGoogle Scholar
  6. Csuhaj-Varjú E, Margenstern M, Vaszil G (2006b) P colonies with a bounded number of cells and programs. In: Hoogeboom HJ, Paun G, Rozenberg G, Salomaa A (eds) Membrane Computing, 7th international workshop, WMC 2006, Leiden, The Netherlands, July 17–21, 2006, Revised, Selected, and Invited Papers, Springer, Lecture Notes in Computer Science, vol 4361, pp 352–366, doi: 10.1007/11963516_22
  7. Freund R, Oswald M (2005) P colonies working in the maximally parallel and in the sequential mode. In: Zaharie D, Petcu D, Negru V, Jebelean T, Ciobanu G, Cicortas A, Abraham A, Paprzycki M (eds) Seventh International symposium on symbolic and numeric algorithms for scientific computing (SYNASC 2005), 25–29 September 2005, Timisoara, Romania, IEEE Computer Society, pp 419–426, doi: 10.1109/SYNASC.2005.55
  8. Kelemen J, Kelemenová A (1992) A grammar-theoretic treatment of multiagent systems. Cybern Syst 23(6):621–633. doi: 10.1080/01969729208927485 MathSciNetCrossRefMATHGoogle Scholar
  9. Kelemen J, Kelemenová A, Păun Gh (2004) Preview of P colonies: a biochemically inspired computing model. In: Workshop and tutorial proceedings. Ninth international conference on the simulation and synthesis of living systems (Alife IX), Boston, Massachusetts, USA, pp 82–86Google Scholar
  10. Korec I (1996) Small universal register machines. Theor Comput Sci 168(2):267–301. doi: 10.1016/S0304-3975(96)00080-1 MathSciNetCrossRefMATHGoogle Scholar
  11. Minsky ML (1967) Computation: finite and infinite machines. Prentice-Hall Inc, Upper Saddle RiverMATHGoogle Scholar
  12. Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143. doi: 10.1006/jcss.1999.1693 MathSciNetCrossRefMATHGoogle Scholar
  13. Păun G (2001) Current trends in theoretical computer science. World Scientific Publishing Co., Inc., River Edge, NJ, USA, chap Computing with Membranes (P Systems): An Introduction, pp 845–866Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Computer Science and Research Institute of the IT4Innovations Centre of ExcellenceSilesian University in OpavaOpavaCzech Republic

Personalised recommendations