Skip to main content

Advertisement

Log in

On the model updating operators in univariate estimation of distribution algorithms

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The role of the selection operation—that stochastically discriminate between individuals based on their merit—on the updating of the probability model in univariate estimation of distribution algorithms is investigated. Necessary conditions for an operator to model selection in such a way that it can be used directly for updating the probability model are postulated. A family of such operators that generalize current model updating mechanisms is proposed. A thorough theoretical analysis of these operators is presented, including a study on operator equivalence. A comprehensive set of examples is provided aiming at illustrating key concepts, main results, and their relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Several software packages include efficient ways of computing the normal cdf.

References

  • Baluja S (1994) Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-94-13. Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

  • Baluja S, Davies S (1997) Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. In: Proceedings of the 14-th International Conference on Machine Learning. San Francisco, California, USA, pp 30–38

  • Bengoetxea E, Larrañaga P, Bloch I, Perchant A, Boeres C (2002) Inexact graph matching by means of estimation of distribution algorithms. Pattern Recognit 35(12):2867–2880

    Article  MATH  Google Scholar 

  • Ceberio J, Irurozki E, Mendiburu A, Lozano JA (2012) A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog AI 1(1):103–117

    MATH  Google Scholar 

  • De Bonet JS, Isbell CL, Viola P (1997) MIMIC: finding optima by estimating probability densities. In: Petsche T, Mozer MC, Jordan MI (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 424–430

    Google Scholar 

  • Droste S (2006) A rigorous analysis of the compact genetic algorithm for linear functions. Nat Comput 5:257–283

    Article  MathSciNet  MATH  Google Scholar 

  • Echegoyen C, Mendiburu A, Santana R, Lozano JA (2013) On the taxonomy of optimization problems under estimation of distribution algorithms. Evolut Comput 21(3):471–495

    Article  Google Scholar 

  • Emmendorfer LR, Pozo AT (2009) Effective linkage learning using low-order statistics and clustering. IEEE Trans Evolut Comput 13(6):1233–1246

    Article  Google Scholar 

  • González C, Lozano JA, Larrañaga P (2001) Analyzing the PBIL algorithm by means of discrete dynamical systems. Complex Syst 12(4):465–479

    MATH  Google Scholar 

  • Harik GR (1999) Linkage learning via probabilistic modeling in the ECGA. Technical report 99010. Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana, Illinois, USA

  • Harik GR, Lobo FG, Goldberg DE (1999) The compact genetic algorithm. IEEE Trans Evolut Comput 3(4):287–297

    Article  Google Scholar 

  • Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution algorithms. Swarm Evolut Comput 1:111–128

    Article  Google Scholar 

  • Johnson A, Shapiro JL (2002) The importance of selection mechanisms in distribution estimation algorithms. In: Collet P, Fonlupt C, Hao JK, Lutton E, Schoenauer M (ed) Evolution artificial, vol 2310. Lecture Notes in Computer Science, Springer, pp 91–103

  • Larrañaga P, Lozano JA (2001) Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer Academic Publishers, Norwell

    MATH  Google Scholar 

  • Lozada-Chang L, Santana R (2011) Univariate marginal distribution algorithm dynamics for a class of parametric functions with unitation constraints. Inf Sci 181(11):2340–2355

    Article  MathSciNet  MATH  Google Scholar 

  • Mühlenbein H (1997) The equation for response to selection and its use for prediction. Evolut Comput 5:303–346

    Article  Google Scholar 

  • Mühlenbein H, Mahnig T (1998) Convergence theory and applications of the factorized distribution algorithm. J Comput Inf Technol 7:19–32

    Google Scholar 

  • Mühlenbein H, Mahnig T (2002) Evolutionary algorithms and the Boltzmann distribution. In: DeJong KA, Poli R, Rowe J (eds) Foundation of genetic algorithms 7. Morgan Kaufmann, Burlington, pp 133–150

    Google Scholar 

  • Mühlenbein H, Mahnig T, Rodriguez AO (1999) Schemata, distributions and graphical models in evolutionary optimization. J Heuristics 5:215–247

    Article  MATH  Google Scholar 

  • Pelikan M, Goldberg DE (2000) Genetic algorithms, clustering, and the breaking of symmetry. Lecture Notes in Computer Science 1917, pp 385–394

  • Pelikan M, Goldberg DE (2001) Escaping hierarchical traps with competent genetic algorithms. In: Genetic and Evolutionary Computation Conference, pp 511–518

  • Pelikan M, Goldberg DE, Cantu-Paz E (2000) Linkage problem, distribution estimation, and Bayesian networks. Evolut Comput 8:311–340

    Article  Google Scholar 

  • Pelikan M, Mühlenbein H (1999) The bivariate marginal distribution algorithm. In: Chawdhry PK, Roy R, Furuhashi T (eds) Advances in soft computing—engineering design and manufacturing. Springer, Berlin, pp 521–535

    Google Scholar 

  • Peña J, Lozano J, Larrañaga P (2005) Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks. Evolut Comput 13(1):43–66

    Article  Google Scholar 

  • Sastry K, Goldberg DE (2001) Modeling tournament selection with replacement using apparent added noise. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). San Francisco, California, USA, p 781

  • Zhang Q (2004a) On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Trans Evolut Comput 8(1):80–93

    Article  Google Scholar 

  • Zhang Q (2004b) On the convergence of a factorized distribution algorithm with truncation selection. Complexity 9(4):17–23

    Article  MathSciNet  Google Scholar 

  • Zhang Q, Mühlenbein H (2004) On the convergence of a class of estimation of distribution algorithms. IEEE Trans Evolut Comput 8(2):127–136

    Article  Google Scholar 

Download references

Acknowledgments

Andrey Bronevich is grateful to the Erasmus Mundus Triple I Consortium that supported a 10-months academic visit to the University of Algarve in 2010. This work is an outcome of a research cooperation between the authors that began with this visit. Andrey Bronevich also thanks the National Research University Higher School of Economics, Moscow, Russia for providing him with 1 month research grant for visiting University of Algarve in July 2014 facilitating the conclusion of the work. José Valente de Oliveira also thanks the National Research University Higher School of Economics, for inviting him for one week visit in November 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Valente de Oliveira.

Appendix

Appendix

Proof of Theorem 1

Under conditions (a)–(e) function \(\gamma _1 \) is differentiable in \(( - \infty ,0]\) and its convexity implies that

$$\begin{aligned} \frac{d}{{dy}}\gamma _1 (y) = \frac{{\varphi '\left( {e^y } \right) e^y }}{{\varphi \left( {e^y } \right) }} \end{aligned}$$

is increasing in \(( - \infty ,0]\). This is obviously equivalent to have \(F(x) = \frac{{\varphi '(x)x}}{{\varphi (x)}}\) as an increasing function in \((0,1]\). Solving this differential equation w.r.t. \(\varphi \) we see that the function \(\varphi \) can be expressed as \(\varphi (x) = Cx^a e^{\int \limits _0^x {\frac{{F_0 (y)}}{y}} dy} \), where an arbitrary constant \(C\) should be chosen such that \(\varphi (1) = 1\), i.e., \(C = e^{ - \int \limits _0^1 {\frac{{F_0 (y)}}{y}} dy} \).

Let us show that the value \(a \geqslant 1\)(clearly \(a > 0\) in order to have \(\varphi (0) = 0)\). Denote \(\varphi _0 (x) = Ce^{\int \limits _0^x {\frac{{F_0 (y)}}{y}} dy} \). Then

$$\begin{aligned} \varphi (x)= & {} x^a \varphi _0 (x);\\ \varphi '(x)= & {} x^a \varphi '_0 (x) + ax^{a - 1} \varphi _0 (x) = x^{a - 1} \varphi _0 (x)F_0 (x) + ax^{a - 1} \varphi _0 (x) \\= & {} x^{a - 1} \varphi _0 (x)\left( {F_0 (x) + a} \right) ;\\ \varphi ''(x)= & {} \varphi '(x)\left( {\frac{{a - 1}}{x} + \frac{{\varphi '_0 (x)}}{{\varphi _0 (x)}} + \frac{{F'_0 (x)}}{{F_0 (x) + a}}} \right) \\= & {} \varphi '(x)\left( {\frac{{a - 1}}{x} + \frac{{F_0 (x)}}{x} + \frac{{F'_0 (x)}}{{F_0 (x) + a}}} \right) . \end{aligned}$$

Therefore, if \(a - 1 < 0\) then \(\varphi ''(x) < 0\) for some values that are close to 0, since \(\mathop {\lim }\limits _{x \rightarrow + 0} \left( {{{\frac{{F_0 (x)}}{x}} / {\frac{{a - 1}}{x}}}} \right) = 0\). This means that \(a \geqslant 1\).

For the second part of the theorem, if we choose the function \(F_0 \) as stated by the theorem, then conditions (a)–(c), and (e) are obviously satisfied. It remains to show that (d) is also satisfied. Function \(\gamma _2 (y) = \ln \left( {1 - \varphi \left( {1 - e^y } \right) } \right) \) is differentiable and the function

$$\begin{aligned} \frac{d}{{dy}}\gamma _2 (y) = - \frac{{\varphi '\left( {1 - e^y } \right) e^y }}{{1 - \varphi \left( {1 - e^y } \right) }} \end{aligned}$$

should be decreasing. This is equivalent to

$$\begin{aligned} g(x) = \frac{{\varphi '(x)(1 - x)}}{{1 - \varphi (x)}} \end{aligned}$$

be an increasing function. Substituting \(\varphi (x) = x^a \varphi _0 (x)\), \(\varphi '(x) = x^{a - 1} \varphi _0 (x)\left( {F_0 (x) + a} \right) \), we get

$$\begin{aligned} g(x) = \frac{{x^{a - 1} \varphi _0 (x)\left( {F_0 (x) + a} \right) (1 - x)}}{{1 - x^a \varphi _0 (x)}}. \end{aligned}$$

Then

$$\begin{aligned} g'(x) = g(x)\left( {\frac{{a - 1}}{x} + \frac{{\varphi _0 (x)}}{{\varphi '_0 (x)}} + \frac{{F'_0 (x)}}{{F_0 (x) + a}} + \frac{{x^{a - 1} \varphi _0 (x)\left( {F_0 (x) + a} \right) }}{{1 - x^a \varphi _0 (x)}} - \frac{1}{{1 - x}}} \right) . \end{aligned}$$

Notice that

$$\begin{aligned} \frac{{\varphi _0 (x)}}{{\varphi '_0 (x)}}= & {} \frac{{F_0 (x)}}{x};\\ \frac{{x^{a - 1} \varphi _0 (x)\left( {F_0 (x) + a} \right) }}{{1 - x^a \varphi _0 (x)}}= & {} \frac{{F_0 (x) + a}}{{x\left( {1 - x^a \varphi _0 (x)} \right) }} - \frac{{F_0 (x) + a}}{x}. \end{aligned}$$

Therefore,

$$\begin{aligned} g'(x) = g(x)\left( {\frac{{F'_0 (x)}}{{F_0 (x) + a}} + \frac{{F_0 (x) + a}}{{x\left( {1 - x^a \varphi _0 (x)} \right) }} - \frac{1}{{x(1 - x)}}} \right) . \end{aligned}$$

Because \(\varphi _0 (x) \leqslant 1\) and \(F_0 (x) \geqslant 0\), \({{F'_0 (x)} / {\left( {F_0 (x) + a} \right) }} \geqslant 0\), we get

$$\begin{aligned} g'(x) \geqslant g(x)\left( {\frac{a}{{x\left( {1 - x^a } \right) }} - \frac{1}{{x(1 - x)}}} \right) . \end{aligned}$$

We see that

$$\begin{aligned} \frac{a}{{x\left( {1 - x^a } \right) }} - \frac{1}{{x(1 - x)}} = \frac{{x^a + a(1 - x) - 1}}{{x\left( {1 - x^a } \right) (1 - x)}} \geqslant 0, \end{aligned}$$

where the inequality \(x^a + a(1 - x) - 1 \geqslant 0\) for \(a \geqslant 1\) and \(x \in [0,1]\) is proved as in Example 3, i.e., \(g'(x) \geqslant 0\) and the condition d) is also fulfilled. \(\square \)

Proof of Proposition 3

We will use the notation from Theorem 1. Computing the function \(g\) for this case, we get

$$\begin{aligned} g(x) = \frac{{\beta \varPhi '\left( {\alpha + \beta \varPhi ^{ - 1} (x)} \right) x}}{{\varPhi '\left( {\varPhi ^{ - 1} (x)} \right) \varPhi \left( {\alpha + \beta \varPhi ^{ - 1} (x)} \right) }} \end{aligned}$$

Let us compute the limit \(b = \mathop {\lim }\limits _{x \rightarrow + 0} g(x)\), involving a new variable \(y = \varPhi ^{ - 1} (x)\):

$$\begin{aligned} b = \mathop {\lim }\limits _{y \rightarrow - \infty } \frac{{\beta \varPhi '\left( {\alpha + \beta y} \right) \varPhi (y)}}{{\varPhi '\left( {y} \right) \varPhi \left( {\alpha + \beta y} \right) }} = \beta \mathop {\lim }\limits _{y \rightarrow - \infty } \frac{{e^{ - \frac{{\left( {\alpha + \beta y} \right) ^2 - y^2 }}{2}} \varPhi (y)}}{{\varPhi \left( {\alpha + \beta y} \right) }} \end{aligned}$$

Obviously, \(b = 1\) for \(\beta = 1\). Applying the L’Hospital rule for the general case, one can obtain that \(b = \beta ^2 \), i.e., we conclude that \(\beta \geqslant 1\).

Let us check now when \(g\) is an increasing function. This condition is equivalent to the non-negativity of the derivative

$$\begin{aligned} f(y) = \frac{d}{{dy}}\ln \left( {\frac{{\beta \varPhi '\left( {\alpha + \beta y} \right) \varPhi (y)}}{{\varPhi '\left( {y} \right) \varPhi \left( {\alpha + \beta y} \right) }}} \right) \end{aligned}$$

for any \(y \in ( - \infty , + \infty )\). Making simple calculations, we get

$$\begin{aligned} f(y)= & {} \beta \frac{{\varPhi ''\left( {\alpha + \beta y} \right) }}{{\varPhi '\left( {\alpha + \beta y} \right) }} + \frac{{\varPhi '(y)}}{{\varPhi \left( {y} \right) }} - \frac{{\varPhi '(y)}}{{\varPhi ''\left( {y} \right) }} - \beta \frac{{\varPhi '\left( {\alpha + \beta y} \right) }}{{\varPhi \left( {\alpha + \beta y} \right) }} \\= & {} - \alpha \beta - \left( {\beta ^2 - 1} \right) y + \frac{{\varPhi '(y)}}{{\varPhi \left( {y} \right) }} - \beta \frac{{\varPhi '\left( {\alpha + \beta y} \right) }}{{\varPhi \left( {\alpha + \beta y} \right) }}. \end{aligned}$$

Notice that \(\mathop {\lim }\limits _{y \rightarrow + \infty } f(y) = - \infty \) for \(\beta > 1\) and \(\mathop {\lim }\limits _{y \rightarrow + \infty } f(y) = - \alpha \) for \(\beta = 1\), therefore, the function \(\varphi \) can satisfy the conditions of Theorem 1 if \(\alpha < 0\) and \(\beta = 1\). For this case we can represent the function \(f\) in the form \(f(y) = w(y) - w(y + \alpha )\), where \(w(y) = y + \frac{\displaystyle {\varPhi '(y)}}{\displaystyle {\varPhi \left( {y} \right) }}\) and \(f(y) \geqslant 0\) for all \(y \in {\mathbb {R}}\) and \(\alpha < 0\), if \(\frac{\displaystyle {dw}}{\displaystyle {dy}} \geqslant 0\). Let us denote \(u(y) = \frac{\displaystyle {\varPhi '(y)}}{\displaystyle {\varPhi \left( {y} \right) }}\). The function \(u\) can be conceived as a partial solution of the Bernoulli differential equation \(\frac{\displaystyle {du}}{\displaystyle {dy}} = - uy - u^2 \). This equation and the condition \(\frac{\displaystyle {dw}}{\displaystyle {dy}} = \frac{\displaystyle {du}}{\displaystyle {dy}} + 1 \geqslant 0\) imply that the function \(f\) is increasing iff \(\frac{\displaystyle {du}}{\displaystyle {dy}} = - uy - u^2 \geqslant - 1\) or, taking in account that the function \(u\) is non-negative, that

$$\begin{aligned} u \leqslant \frac{{ - y + \sqrt{y^2 + 4} }}{2} \end{aligned}$$

By expressing the last inequality in terms of cdf for the standard normal distribution one gets:

$$\begin{aligned} \varPhi (y) \geqslant \frac{2}{{\left( { - y + \sqrt{y^2 + 4} } \right) \sqrt{2\pi } }}e^{ - \frac{{y^2 }}{2}} = \frac{{\left( {y + \sqrt{y^2 + 4} } \right) }}{{2\sqrt{2\pi } }}e^{ - \frac{{y^2 }}{2}} \end{aligned}$$
(18)

which implies

$$\begin{aligned} \frac{d}{{dy}}\varPhi (y) \geqslant \frac{d}{{dy}}\frac{{\left( {y + \sqrt{y^2 + 4} } \right) }}{{2\sqrt{2\pi } }}e^{ - \frac{{y^2 }}{2}} \text{ for } \text{ all } y \in {\mathbb {R}}, \end{aligned}$$

or

$$\begin{aligned} \frac{1}{{\sqrt{2\pi } }}e^{ - \frac{{y^2 }}{2}} \geqslant \frac{1}{{2\sqrt{2\pi } }}e^{ - \frac{{y^2 }}{2}} \left( {1 + \frac{y}{{\sqrt{y^2 + 4} }} - y^2 - y\sqrt{y^2 + 4} } \right) \end{aligned}$$

or

$$\begin{aligned} 1 \geqslant \frac{1}{2}\left( {1 + \frac{y}{{\sqrt{y^2 + 4} }} - y^2 - \frac{{y\left( {y^2 + 4} \right) }}{{\sqrt{y^2 + 4} }}} \right) \end{aligned}$$

Now denote \(v = {y / {\sqrt{y^2 + 4} }}\). Then \(y^2 = {{4v^2 } / {\left( {1 - v^2 } \right) }}\) and we get:

$$\begin{aligned} 1 \geqslant \frac{1}{2}\left( {1 + v - \frac{{4v^2 }}{{1 - v^2 }} - v\left( {4 + \frac{{4v^2 }}{{1 - v^2 }}} \right) } \right) = \frac{1}{2}\left( {1 - 3v - \frac{{4v^2 }}{{1 - v^2 }}(1 + v)} \right) \end{aligned}$$

We proceed taking in to account that \(\left| v \right| < 1\):

$$\begin{aligned} 1 \geqslant - 3v - \frac{{4v^2 }}{{1 - v}} \end{aligned}$$

or

$$\begin{aligned} v^2 + 2v + 1 \geqslant 0 \end{aligned}$$

As this inequality is satisfied for all real \(v\) we conclude that \(g\) is an increasing function and that the function \(\varphi \) satisfies the conditions of Theorem 1 for \(\alpha < 0\) and \(\beta = 1\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bronevich, A.G., Valente de Oliveira, J. On the model updating operators in univariate estimation of distribution algorithms. Nat Comput 15, 335–354 (2016). https://doi.org/10.1007/s11047-015-9499-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9499-0

Keywords

Navigation