Natural Computing

, Volume 12, Issue 4, pp 539–550 | Cite as

Towards intrinsically universal asynchronous CA

  • Thomas Worsch


We consider asynchronous one-dimensional cellular automata (CA). It is shown that there is one with von Neumann neighborhood of radius 1 which can simulate each asynchronous one-dimensional cellular automaton. Analogous constructions are described for α-asynchronous CA (where each cell independently enters a new state with probability α, and for “neighborhood independent” asynchronous CA (where never two cells are updated simultaneously if one is in the neighborhood of the other). This also gives rise to a construction for so-called fully asynchronous CA (where in each step exactly one cell is updated).


Cellular automata Asynchrony Universality 


  1. Arrighi P, Schabanel N, Theyssier G (2012) Intrinsic simulations between stochastic cellular automata. In: Proceedings automata/JAC 2012, pp 208–224Google Scholar
  2. Bandini S, Bonomi A, Vizzari G (2010) What do we mean by asynchronous CA? A reflection on types and effects of asynchronicity. In: Bandini S, Manzoni S, Umeo H, Vizzari G (eds) Proceedings ACRI 2010. LNCS, vol 6350. Springer, Heidelberg, pp 385–394Google Scholar
  3. Bouré O, Fatès N, Chevrier V (2012) Probing robustness of cellular automata through variations of asynchronous updating. Nat Comput 11(4):553–564MathSciNetCrossRefGoogle Scholar
  4. Delorme M, Mazoyer J, Ollinger N, Theyssier G (2011) Bulking II: classifications of cellular automata. Theor Comput Sci 412(30):3881–3905MathSciNetCrossRefMATHGoogle Scholar
  5. Dennunzio A, Formenti E, Manzoni L, Mauri G (2012) m-asynchronous cellular automata. In: Proceedings ACRI 2012. LNCS, vol 7495. Springer, Heidelberg, pp 653–662Google Scholar
  6. Durand-Lose JO (2000) Reversible space–time simulation of cellular automata. Theor Comput Sci 246(1–2):117–129MathSciNetCrossRefMATHGoogle Scholar
  7. Fatès N, Gerin L (2008) Examples of fast and slow convergence of 2D asynchronous cellular systems. In: Umeo H et al (eds) Proceedings ACRI 2008. Springer, Heidelberg, pp 184–191Google Scholar
  8. Golze U (1978) (A-)synchronous (non-)deterministic cell spaces simulating each other. J Comput Syst Sci 17(2):176–193MathSciNetCrossRefMATHGoogle Scholar
  9. Lee J, Adachi S, Peper F, Morita K (2004) Asynchronous game of life. Physica D 194(3–4):369–384MathSciNetCrossRefMATHGoogle Scholar
  10. Nakamura K (1974) Asynchronous cellular automata and their computational ability. Syst Comput Control 5(5):58–66Google Scholar
  11. Ollinger N (2008) Universalities in cellular automata: a (short) survey. In: Durand B (ed) Proceedings JAC 2008, Uze, France, pp 102–118Google Scholar
  12. Regnault D, Schabanel N, Thierry E (2009) Progresses in the analysis of stochastic 2D cellular automata: a study of asynchronous 2D minority. Theor Comput Sci 410(47–49):4844–4855MathSciNetCrossRefMATHGoogle Scholar
  13. Schuhmacher A (2012) Simulationsbegriffe bei asynchronen Zellularautomaten. Report for a student seminarGoogle Scholar
  14. Worsch T (2010) A note on (intrinsically?) universal asynchronous cellular automata. In: Fatès N, Kari J, Worsch T (eds) Proceedings Automata 2010, Nancy, France, pp 339–350Google Scholar
  15. Worsch T (2012a) (Intrinsically?) universal asynchronous cellular automata. In: Sirakoulis G, Bandini S (eds) Proceedings ACRI 2012. LNCS, vol 7495. Springer, Heidelberg, pp 689–698Google Scholar
  16. Worsch T (2012b) (Intrinsically?) universal asynchronous cellular automata II. In: Formenti E (ed) exploratory papers proceedings ACRI 2012. LNCS. Springer, Heidelberg, pp 38–51Google Scholar
  17. Worsch T, Nishio H (2009) Achieving universality of CA by changing the neighborhood. J Cell Autom 4(3):237–246MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations