Advertisement

Natural Computing

, Volume 12, Issue 1, pp 5–8 | Cite as

Continuous input nonlocal games

  • Netanel Aharon
  • Shai Machnes
  • Benni Reznik
  • Jonathan Silman
  • Lev Vaidman
Article

Abstract

We present a family of nonlocal games in which the inputs the players receive are continuous. We study three representative members of the family. For the first two a team sharing quantum correlations (entanglement) has an advantage over any team restricted to classical correlations. We conjecture that this is true for the third member of the family as well.

Keywords

Quantum games Entanglement Nonlocality Bell inequalities 

Notes

Acknowledgments

We acknowledge support from the Israeli Science Foundation (Grants No. 784/06 and 990/06), and from the European Commission under the Integrated Project Qubit Applications (QAP) funded by the IST Directorate (Contract No. 015848).

References

  1. Aravind P (2004) quantum mysteries revisited again. Am J Phys 72:1303–1307MathSciNetMATHCrossRefGoogle Scholar
  2. Bell J (1964) On the Einstein Podolsky Rosen paradox. Phys 1:195–200Google Scholar
  3. Brassard G, Broadbent A, Tapp A (2003) Multi-party pseudo-telepathy. Lect Notes Comput Sci 2478:1–11MathSciNetCrossRefGoogle Scholar
  4. Cabello A (2003) Greenberger–Horne–Zeilinger-like proof of Bells theorem involving observers who do not share a reference frame. Phys Rev A 68:042104MathSciNetCrossRefGoogle Scholar
  5. Clauser J, Holt R, Horne M, Shimony A (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884CrossRefGoogle Scholar
  6. Cleve R, Høyer P, Toner B, Watrous J (2004) Consequences and limits of nonlocal strategies. In: Proceedings of the 19th IEEE conference on computational complexity, Amherst, pp 21–24Google Scholar
  7. Gisin N (1999) Bell inequality for arbitrary many settings of the analyzers. Phys Lett A 260:1–3MathSciNetMATHCrossRefGoogle Scholar
  8. Silman J, Machnes S, Aharon N (2008) On the relation between Bell’s inequalities and nonlocal games. Phys Lett A 372:3796–3800MathSciNetMATHCrossRefGoogle Scholar
  9. Tsirelson B (1996) Lecture notes in quantum information processing. http://www.tau.ac.il/tsirel/courses/quantinf/syllabus.htmll
  10. Tsirelson B (2007) Some extremal problems related to Bell-type inequalities. arXiv:0706.1091 [math.CA]Google Scholar
  11. Vaidman L (1999) Variations on the theme of the Greenberger–Horne–Zeilinger proof. Found Phys 29:615–630MathSciNetCrossRefGoogle Scholar
  12. Vaidman L (2001) Tests of Bell inequalities. Phys Lett A 286:241–244MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Netanel Aharon
    • 1
  • Shai Machnes
    • 1
    • 3
  • Benni Reznik
    • 1
  • Jonathan Silman
    • 1
    • 2
  • Lev Vaidman
    • 1
  1. 1.School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact SciencesTel-Aviv UniversityTel-AvivIsrael
  2. 2.Laboratoire d’Information QuantiqueUniversité Libre de Bruxelles (ULB)BruxellesBelgium
  3. 3.Institut für Theoretische PhysikUniversität UlmUlmGermany

Personalised recommendations