Natural Computing

, Volume 11, Issue 1, pp 13–22 | Cite as

Partitioned quantum cellular automata are intrinsically universal



There have been several non-axiomatic approaches taken to define quantum cellular automata (QCA). Partitioned QCA (PQCA) are the most canonical of these non-axiomatic definitions. In this work we show that any QCA can be put into the form of a PQCA. Our construction reconciles all the non-axiomatic definitions of QCA, showing that they can all simulate one another, and hence that they are all equivalent to the axiomatic definition. This is achieved by defining generalised n-dimensional intrinsic simulation, which brings the computer science based concepts of simulation and universality closer to theoretical physics. The result is not only an important simplification of the QCA model, it also plays a key role in the identification of a minimal n-dimensional intrinsically universal QCA.


Quantum computing Cellular automata Intrinsic universality 



The authors would like to thank Jérôme Durand-Lose, Jacques Mazoyer, Nicolas Ollinger, Guillaume Theyssier and Philippe Jorrand.


  1. Albert J, Culik K (1987) A simple universal cellular automaton and its one-way and totalistic version. Complex Syst 1:1–16MATHMathSciNetGoogle Scholar
  2. Arrighi P, Fargetton R, Wang Z (2009) Intrinsically universal one-dimensional quantum cellular automata in two flavours. Fundamenta Informaticae 21:1001–1035MathSciNetGoogle Scholar
  3. Arrighi P, Grattage J (2009) Intrinsically universal n-dimensional quantum cellular automata. Journal version of refereed conference proceedings. ArXiv preprint: arXiv:0907.3827 (submitted)Google Scholar
  4. Arrighi P, Grattage J (2010) A simple n-dimensional intrinsically universal quantum cellular automaton. In: Language and automata theory and applications. Lecture notes in computer science, vol 6031. Springer, Heidelberg, pp 70–81Google Scholar
  5. Arrighi P, Nesme V, Werner RF (2008) Quantum cellular automata over finite, unbounded configurations. In: Proceedings of MFCS. Lecture notes in computer science, vol 5196. Springer, Heidelberg, pp 64–75Google Scholar
  6. Arrighi P, Nesme V, Werner R (2010) Unitarity plus causality implies localizability. QIP 2010 and J Comput Syst Sci. ArXiv preprint: arXiv:0711.3975Google Scholar
  7. Banks ER (1970) Universality in cellular automata. In: SWAT ’70: Proceedings of the 11th annual symposium on switching and automata theory (SWAT 1970). IEEE Computer Society, Washington, DC, USA, pp 194–215Google Scholar
  8. Berlekamp ER, Conway JH, Guy RK (2003) Winning ways for your mathematical plays. AK Peters Ltd, WellesleyGoogle Scholar
  9. Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68(4):042311CrossRefMathSciNetGoogle Scholar
  10. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62:062314CrossRefMathSciNetGoogle Scholar
  11. Durand B, Roka Z (1998) The game of life: universality revisited, Research report 98-01. Technical report, Ecole Normale Suprieure de LyonGoogle Scholar
  12. Durand-Lose JO (1995) Reversible cellular automaton able to simulate any other reversible one using partitioning automata. In: LATIN’95: theoretical informatics. Lecture notes in computer science, number 911. Springer, Heidelberg, pp 230–244Google Scholar
  13. Durand-Lose JO (1997) Intrinsic universality of a 1-dimensional reversible cellular automaton. In: Proceedings of STACS 97. Lecture notes in computer science. Springer, Heidelberg, p 439Google Scholar
  14. Durand-Lose JO (2008) Universality of cellular automata. In: Encyclopedia of complexity and system science. Springer, New York, p 22Google Scholar
  15. Feynman RP (1986) Quantum mechanical computers. Foundations of Physics (Historical Archive) 16(6):507–531CrossRefMathSciNetGoogle Scholar
  16. Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375MATHCrossRefMathSciNetGoogle Scholar
  17. Inokuchi S, Mizoguchi Y (2005) Generalized partitioned quantum cellular automata and quantization of classical CA. Int J Unconv Comput. ArXiv preprint: quant-ph/0312102, 1:149–160Google Scholar
  18. Karafyllidis IG (2004) Definition and evolution of quantum cellular automata with two qubits per cell. Phys Rev A 70:044301CrossRefGoogle Scholar
  19. Kari J (1999) On the circuit depth of structurally reversible cellular automata. Fundamenta Informaticae 38(1-2):93–107MATHMathSciNetGoogle Scholar
  20. Lloyd S (2005) A theory of quantum gravity based on quantum computation. ArXiv preprint: quant-ph/0501135Google Scholar
  21. Margolus N (1984) Physics-like models of computation. Phys D Nonlinear Phenom 10(1–2):81–95Google Scholar
  22. Margolus N (1990) Parallel quantum computation. In: Complexity, entropy, and the physics of information: the proceedings of the 1988 workshop on complexity, entropy, and the physics of information held May–June, 1989. Perseus Books, Santa Fe, New Mexico, p 273Google Scholar
  23. Mazoyer J (1987) A six-state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238MATHCrossRefMathSciNetGoogle Scholar
  24. Mazoyer J, Rapaport I (1998) Inducing an order on cellular automata by a grouping operation. In: Proceedings of STACS’98. Lecture notes in computer science, vol 1373. Springer, Heidelberg, pp 116–127Google Scholar
  25. Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theoretical Computer Science 148(1):157–163MATHCrossRefGoogle Scholar
  26. Morita K, Harao M (1989) Computation universality of one-dimensional reversible (injective) cellular automata. IEICE Trans Inf Syst E 72:758–762Google Scholar
  27. Morita K, Ueno S (1992) Computation-universal models of two-dimensional 16-state reversible cellular automata. IEICE Trans Inf Syst E 75:141–147Google Scholar
  28. Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in 1D. ArXiv preprint: arXiv:0802.0886Google Scholar
  29. Ollinger N (2008) Universalities in cellular automata a (short) survey. In: Durand B (eds) First symposium on cellular automata “Journées Automates Cellulaires” (JAC 2008), Uzès, France, April 21–25, 2008. Proceedings. MCCME Publishing House, Moscow, pp 102–118Google Scholar
  30. Paz JP, Zurek WH (2002) Environment-induced decoherence and the transition from quantum to classical. Lecture notes in physics, Springer, Heidelberg, pp 77–140Google Scholar
  31. Pérez-Delgado CA, Cheung D (2007) Local unreversible cellular automaton ableitary quantum cellular automata. Phys Rev A 76(3):32320CrossRefGoogle Scholar
  32. Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A 72(2):22301CrossRefMathSciNetGoogle Scholar
  33. Schumacher B, Werner R (2004) Reversible quantum cellular automata. ArXiv pre-print quant-ph/0405174Google Scholar
  34. Shepherd DJ, Franz T, Werner RF (2006) A universally programmable quantum cellular automata. Phys Rev Lett 97:020502Google Scholar
  35. Theyssier G (2004) Captive cellular automata. In: Proceedings of MFCS 2004. Lecture notes in computer science, vol 3153. Springer, Heidelberg, pp 427–438Google Scholar
  36. Toffoli T (1977) Computation and construction universality of reversible cellular automata. J Comput Syst Sci 15(2): 213–231Google Scholar
  37. Van Dam W (1996) Quantum cellular automata. Masters thesis, University of Nijmegen, The NetherlandsGoogle Scholar
  38. Vollbrecht KGH, Cirac JI (2004) Reversible universal quantum computation within translation-invariant systems. New J Phys Rev A 73:012324CrossRefGoogle Scholar
  39. von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign, IL Google Scholar
  40. Watrous J (1991) On one-dimensional quantum cellular automata. Complex Syst 5(1):19–30MathSciNetGoogle Scholar
  41. Watrous J (1995) Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on 23–25 October 1995, Milwaukee, WI, USA, pp 528–537Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratoire LIG, Bâtiment IMAG C University of GrenobleSaint-Martin-d’HèresFrance
  2. 2.Laboratoire LIP, Ecole Normale Supérieure de LyonLyon cedex 07France

Personalised recommendations