Skip to main content

Advertisement

Log in

Early Interaction of Alternaria infectoria Conidia with Macrophages

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Fungi of the genus Alternaria are ubiquitous indoor and outdoor airborne agents, and individuals are daily exposed to their spores. Although its importance in human infections and, particularly in respiratory allergies, there are no studies of how Alternaria spp. spores interact with host cells. Our aim was to study the early interaction of Alternaria infectoria spores with macrophages, the first line of immune defense. RAW 264.7 macrophages were infected with A. infectoria conidia, and the internalization and viability of conidia once inside the macrophages were quantified during the first 6 h of interaction. Live cell imaging was used to study the dynamics of this interaction. TNF-α production was quantified by relative gene expression, and the concentration of other cytokines (IL-1α, IL-1β, IL-6, IL-4, IL-10, IL-17, GM-CSF and INF-γ) and a chemokine, MIP-1α, was quantified by ELISA. Conidia were rapidly internalized by macrophages, with approximately half internalized after 30 min of interaction. During the first 6 h of interaction, macrophages retained the ability to mitotically divide while containing internalized conidia. The classical macrophage-activated morphology was absent in macrophages infected with conidia, and TNF-α and other cytokines and chemokines failed to be produced. Thus, macrophages are able to efficiently phagocyte A. infectoria conidia, but, during the first 6 h, no effective antifungal response is triggered, therefore promoting the residence of these fungal conidia inside the macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pegorie M, Denning DW, Welfare W. Estimating the burden of invasive and serious fungal disease in the United Kingdom. J Infect. 2017;74(1):60–71.

    Article  Google Scholar 

  2. Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, et al. Fungal allergy in asthma–state of the art and research needs. Clin Transl Allergy. 2014;4:1–23.

    Article  Google Scholar 

  3. Bush RK. Fungal sensitivity: new insights and clinical approaches. J Allergy Clin Immunol Pract. 2016;4(3):433–4.

    Article  Google Scholar 

  4. Goldman DL, Huffnagle GB. Potential contribution of fungal infection and colonization to the development of allergy. Med Mycol. 2009;47(5):445–56.

    Article  CAS  Google Scholar 

  5. Denning DW, O’Driscoll BR, Powell G, Chew F, Atherton GT, Vyas A, et al. Randomized controlled trial of oral antifungal treatment for severe asthma with fungal sensitization. Am J Respir Crit Care Med. 2009;179(1):11–8.

    Article  CAS  Google Scholar 

  6. Kasprzyk I, Rodinkova V, Šaulienė I, Ritenberga O, Grinn-Gofron A, Nowak M, et al. Air pollution by allergenic spores of the genus Alternaria in the air of central and eastern Europe. Environ Sci Pollut Res Int. 2015;22(12):9260–74.

    Article  CAS  Google Scholar 

  7. Pastor FJ, Guarro J. Alternaria infections: laboratory diagnosis and relevant clinical features. Clin Microbiol Infect. 2008;14(8):734–46.

    Article  CAS  Google Scholar 

  8. Hipolito E, Faria E, Alves AF, de Hoog GS, Anjos J, Gonçalves T, et al. Alternaria infectoria brain abscess in a child with chronic granulomatous disease. Eur J Clin Microbiol Infect Dis. 2008;28(4):377–80.

    Article  Google Scholar 

  9. Vicencio AG, Santiago MT, Tsirilakis K, Stone A, Worgall S, Foley EA, et al. Fungal sensitization in childhood persistent asthma is associated with disease severity. Pediatr Pulmonol. 2014;49(1):8–14.

    Article  Google Scholar 

  10. Stern DA, Morgan WJ, Halonen M, Wright AL, Martinez FD. Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: a longitudinal birth-cohort study. Lancet. 2008;372(9643):1058–64.

    Article  Google Scholar 

  11. Anjos J, Fernandes C, Silva BMA, Quintas C, Abrunheiro A, Gow NAR, et al. β(1,3)-glucan synthase complex from Alternaria infectoria, a rare dematiaceous human pathogen. Med Mycol. 2012;50(7):716–25.

    Article  CAS  Google Scholar 

  12. Fernandes C, Anjos J, Walker LA, Silva BMA, Cortes L, Mota M, et al. Modulation of Alternaria infectoria cell wall chitin and glucan synthesis by cell wall synthase inhibitors. Antimicrob Agents Chemother. 2014;58(5):2894–904.

    Article  Google Scholar 

  13. Fernandes C, Prados-Rosales R, Silva BM, Nakouzi-Naranjo A, Zuzarte M, Chatterjee S, et al. Activation of melanin synthesis in Alternaria infectoria by antifungal drugs. Antimicrob Agents Chemother. 2016;60(3):1646–55.

    Article  CAS  Google Scholar 

  14. Heinekamp T, Schmidt H, Lapp K, Pähtz V, Shopova I, Köster-Eiserfunke N, et al. Interference of Aspergillus fumigatus with the immune response. Semin Immunopathol. 2015;37(2):141–52.

    Article  CAS  Google Scholar 

  15. Erwig LP, Gow NAR. Interactions of fungal pathogens with phagocytes. Nat Rev Micro. 2016;14(3):163–76.

    Article  CAS  Google Scholar 

  16. Brakhage AA, Bruns S, Thywissen A, Zipfel PF, Behnsen J. Interaction of phagocytes with filamentous fungi. Curr Opin Microbiol. 2010;13(4):409–15.

    Article  CAS  Google Scholar 

  17. Phadke AP, Mehrad B. Cytokines in host defense against Aspergillus: recent advances. Med Mycol. 2005;43:S173–6.

    Article  CAS  Google Scholar 

  18. Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M. Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol. 2011;301(5):436–44.

    Article  CAS  Google Scholar 

  19. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywißen A, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6(4):e1000873.

    Article  Google Scholar 

  20. Latgé JP. Tasting the fungal cell wall. Cell Microbiol. 2010;12(7):863–72.

    Article  Google Scholar 

  21. Volling K, Thywissen A, Brakhage Axel A, Saluz Hans P. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol. 2011;13(8):1130–48.

    Article  CAS  Google Scholar 

  22. Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt Mark S, Samonis G, Drakos E, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe. 2016;19(1):79–90.

    Article  CAS  Google Scholar 

  23. Ghosh S, Howe N, Volk K, Tati S, Nickerson KW, Petro TM. Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol Med Microbiol. 2010;60(1):63–73.

    Article  CAS  Google Scholar 

  24. Jaïdane H, Caloone D, Lobert PE, Sane F, Dardenne O, Naquet P, et al. Persistent infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor. J Virol. 2012;86(20):11151–62.

    Article  Google Scholar 

  25. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  Google Scholar 

  26. Merly L, Smith SL. Murine RAW 264.7 cell line as an immune target: are we missing something? Immunopharmacol Immunotoxicol. 2017;39:55–8.

    Article  CAS  Google Scholar 

  27. Berghaus LJ, Moore JN, Hurley DJ, Vandenplas ML, Fortes BP, Wolfert MA, Boons GJ. Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comp Immunol Microbiol Infect Dis. 2010;33:443–54.

    Article  Google Scholar 

  28. Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, Rygiel T, Król M. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. PLoS ONE. 2018;13:e0198943.

    Article  Google Scholar 

  29. Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NAR, et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog. 2012;8(3):e1002578.

    Article  CAS  Google Scholar 

  30. García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O. The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun. 2011;79(6):2136–44.

    Article  Google Scholar 

  31. Knox BP, Huttenlocher A, Keller NP. Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genet Biol. 2017;105:52–4.

    Article  CAS  Google Scholar 

  32. Murai H, Qi H, Choudhury B, Wild J, Dharajiya N, Vaidya S, et al. Alternaria-induced release of IL-18 from damaged airway epithelial cells: an NF-κB dependent mechanism of Th2 differentiation? PLoS ONE. 2012;7(2):e30280.

    Article  CAS  Google Scholar 

  33. Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H. The danger signal, extracellular ATP, is a sensor for airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol. 2011;186(7):4375–87.

    Article  CAS  Google Scholar 

  34. Larone DH. Medically important fungi—a guide to identification. 3rd ed. Washington: ASM Press; 1995.

    Google Scholar 

  35. Slesiona S, Gressler M, Mihlan M, Zaehle C, Schaller M, Barz D, et al. Persistence versus escape: Aspergillus terreus and Aspergillus fumigatus employ different strategies during interactions with macrophages. PLoS ONE. 2012;7(2):e31223.

    Article  CAS  Google Scholar 

  36. Wong AO, Marthi M, Mendel ZI, Gregorka B, Swanson MS, Swanson JA. Renitence vacuoles facilitate protection against phagolysosomal damage in activated macrophages. Mol Biol Cell. 2018;29(5):657–68.

    Article  CAS  Google Scholar 

  37. McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA. 2013;110(43):17253–8.

    Article  CAS  Google Scholar 

  38. Filler SG, Yeaman MR, Sheppard DC. Tumor necrosis factor inhibition and invasive fungal infections. Clin Infect Dis. 2005;41(3):S208–12.

    Article  CAS  Google Scholar 

  39. Ali T, Kaitha S, Mahmood S, Ftesi A, Stone J, Bronze MS. Clinical use of anti-TNF therapy and increased risk of infections. Drug Health Patient Saf. 2013;5:79–99.

    Article  Google Scholar 

  40. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–21.

    Article  CAS  Google Scholar 

  41. Romani L. Immunity to fungal infections. Nat Rev Immunol. 2011;11(4):275–88.

    Article  CAS  Google Scholar 

  42. Ballou ER, Avelar GM, Childers DS, Mackie J, Bain JM, Wagener J, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol. 2016;2:16238.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by FEDER funds through the Operational Programme Competitiveness Factors-COMPETE and national funds by FCT-Foundation for Science and Technology under the strategic project UID/NEU/04539/2019 and by HealthyAging2020:CENTRO-01-0145-FEDER-000012. This work was also financed through Program Santander-Totta/FMUC (FMUC-BST-2017). C. Fernandes and L. Rodrigues were recipients of fellowships from FCT-Fundação para a Ciência e Tecnologia, respectively, SFRH/BPD/63733/2009 and SFRH/BD/74181/2010.

We acknowledge Luísa Cortes and Margarida Caldeira for helpful technical microscopy support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Almeida.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: A. Vecchiarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.C., Antunes, D., Silva, B.M.A. et al. Early Interaction of Alternaria infectoria Conidia with Macrophages. Mycopathologia 184, 383–392 (2019). https://doi.org/10.1007/s11046-019-00339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-019-00339-6

Keywords

Navigation