, Volume 183, Issue 4, pp 679–689 | Cite as

Candidemia in Adults at a Tertiary Hospital in China: Clinical Characteristics, Species Distribution, Resistance, and Outcomes

  • Shaoming Lin
  • Ruilan Chen
  • Song Zhu
  • Huijun Wang
  • Lianfang Wang
  • Jian Zou
  • Jingdong Yan
  • Xiangdong Zhang
  • Dimitrios Farmakiotis
  • Xiaojiang Tan
  • Eleftherios Mylonakis
Original Paper



Candidemia is one of the most common nosocomial bloodstream infections. Early diagnosis and antifungal treatment improve clinical outcomes in some studies but not all, with diverse data reported from different institutions. Similarly, antifungal resistance is more common in the USA than in Europe, but there is little data regarding the microbiology and clinical course of candidemia in adult patients in Asia.


(1) To capture species distribution and drug resistance rates among Candida bloodstream isolates, (2) to describe clinical features of candidemia, and (3) to identify factors associated with all-cause mortality, with emphasis on early initiation of antifungal treatment, at a large tertiary University Hospital in China.


In this single-center retrospective study, we identified all patients with candidemia, between 2008 and 2014. Demographic and clinical characteristics, microbiological information, details of antifungal therapy and clinical outcomes were collected.


We studied 166 patients. 71 (42.8%) had cancer. Candida albicans was the most frequent species (37.3%), followed by C. parapsilosis (24.1%), C. tropicalis (22.8%), and C. glabrata (14.5%). Antifungal resistance was more frequent in non-albicans strains and especially C. glabrata. Twenty patients received inappropriate treatment with all-cause mortality of 35%. The remaining 146 patients had significantly lower mortality (21.9%, P = 0.045). Among patients who received antifungal treatment, mortality rate increased with time to appropriate antifungal therapy (AAT): 13.7%, for < 24 h, 21.1% for 24–48 h, 23.1% for > 48 h, and 32.4% among patients who received no AT (χ2 for trend P = 0.039). Initiating AAT more than 24 h after blood culture collection was an independent risk factor for mortality, after adjustment for other confounders (OR 7.1, 95% CI 1.3–39.4, P = 0.024).


Candida albicans was the most frequent cause of candidemia at a large tertiary hospital in China, but antifungal resistance is a growing concern among non-albicans Candida species. The mortality rate of patients treated with ineffective antifungal agents based on in vitro susceptibilities was similar to that of patients who received no treatment at all, and delayed initiation of antifungal treatment was associated with increased risk of death.


Candida bloodstream infection Candidemia Antifungal therapy Antifungal resistance Risk factors Clinical outcomes 



Appropriate antifungal therapy


Acute physiology and chronic health evaluation


Antifungal therapy


Candida bloodstream infection


Electronic medical record




Inappropriate antifungal therapy


Intensive care unit


Minimal inhibitory concentration(s)


Mechanical ventilation


Sequential organ failure assessment




United States


White blood cell count


Charlson weighted index of comorbidities



This work was supported by the Guangdong Natural Science Foundation (Grants 2014A030313305), Science and Technology Planning Project of Guangzhou, Guangdong Province, P. R. China (Grants 201510010046), Science and Technology Planning Project of Guangdong Province, P. R. China (Grants 2015A050502026) and National Natural Science Foundation of China (Grants 81570012) to Xiaojiang Tan. Dr. Farmakiotis has received research support from Astellas Pharma and consultant fees from Viracor. Dr. Mylonakis has received research support from Astellas Pharma and T2 Biosystems. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. All other authors have no financial disclosures.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest. The authors alone are responsible for the content and the writing of the paper.


  1. 1.
    Bassetti M, Peghin M, Timsit JF. The current treatment landscape: candidiasis. J Antimicrob Chemother. 2016;71(suppl 2):ii13–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Kullberg BJ, Arendrup MC. Invasive candidiasis. N Engl J Med. 2015;373(15):1445–56.CrossRefPubMedGoogle Scholar
  3. 3.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370(13):1198–208.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Farmakiotis D, Kyvernitakis A, Tarrand JJ, Kontoyiannis DP. Early initiation of appropriate treatment is associated with increased survival in cancer patients with Candida glabrata fungaemia: a potential benefit from infectious disease consultation. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2015;21(1):79–86.Google Scholar
  5. 5.
    Wang E, Farmakiotis D, Yang D, McCue DA, Kantarjian HM, Kontoyiannis DP, et al. The ever-evolving landscape of candidaemia in patients with acute leukaemia: non-susceptibility to caspofungin and multidrug resistance are associated with increased mortality. J Antimicrob Chemother. 2015;70(8):2362–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;41(9):1232–9.CrossRefGoogle Scholar
  7. 7.
    Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance(R)) registry, 2004–2008. Diagn Microbiol Infect Dis. 2012;74(4):323–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–92.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim SH, Yoon YK, Kim MJ, Sohn JW. Clinical impact of time to positivity for Candida species on mortality in patients with candidaemia. J Antimicrob Chemother. 2013;68(12):2890–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2006;43(1):25–31.CrossRefGoogle Scholar
  11. 11.
    Kollef M, Micek S, Hampton N, Doherty JA, Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;54(12):1739–46.CrossRefGoogle Scholar
  12. 12.
    Klevay MJ, Ernst EJ, Hollanbaugh JL, Miller JG, Pfaller MA, Diekema DJ. Therapy and outcome of Candida glabrata versus Candida albicans bloodstream infection. Diagn Microbiol Infect Dis. 2008;60(3):273–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Kludze-Forson M, Eschenauer GA, Kubin CJ, Della-Latta P, Lam SW. The impact of delaying the initiation of appropriate antifungal treatment for Candida bloodstream infection. Med Mycol. 2010;48(2):436–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Taur Y, Cohen N, Dubnow S, Paskovaty A, Seo SK. Effect of antifungal therapy timing on mortality in cancer patients with candidemia. Antimicrob Agents Chemother. 2010;54(1):184–90.CrossRefPubMedGoogle Scholar
  15. 15.
    Grim SA, Berger K, Teng C, Gupta S, Layden JE, Janda WM, et al. Timing of susceptibility-based antifungal drug administration in patients with Candida bloodstream infection: correlation with outcomes. J Antimicrob Chemother. 2012;67(3):707–14.CrossRefPubMedGoogle Scholar
  16. 16.
    Farmakiotis D, Kontoyiannis DP. Emerging issues with diagnosis and management of fungal infections in solid organ transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2015;15(5):1141–7.CrossRefGoogle Scholar
  17. 17.
    Alexander BD, Johnson MD, Pfeiffer CD, Jimenez-Ortigosa C, Catania J, Booker R, et al. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(12):1724–32.CrossRefGoogle Scholar
  18. 18.
    Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Drug-resistant Candida glabrata infection in cancer patients. Emerg Infect Dis. 2014;20(11):1833–40.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ostrosky-Zeichner L. Candida glabrata and FKS mutations: witnessing the emergence of the true multidrug-resistant Candida. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(12):1733–4.CrossRefGoogle Scholar
  20. 20.
    Vallabhaneni S, Cleveland AA, Farley MM, Harrison LH, Schaffner W, Beldavs ZG, et al. Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis. 2015;2(4):ofv163.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Famakiotis D, Kontoyiannis DP. Epidemiology of antifungal resistance in human pathogenic yeasts: current viewpoint and practical recommendations for management. Int J Antimicrob Agent. 2017;50(3):318–24.CrossRefPubMedGoogle Scholar
  22. 22.
    Delliere S, Healey K, Gits-Muselli M, Carrara B, Barbaro A, Guigue N, et al. Fluconazole and echinocandin resistance of Candida glabrata correlates better with antifungal drug exposure rather than with MSH2 mutator genotype in a French cohort of patients harboring low rates of resistance. Front Microbiol. 2016;7:2038.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shields RK, Nguyen MH, Press EG, Cumbie R, Driscoll E, Pasculle AW, et al. Rate of FKS mutations among consecutive Candida isolates causing bloodstream infection. Antimicrob Agents Chemother. 2015;59(12):7465–70.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shields RK, Nguyen MH, Press EG, Kwa AL, Cheng S, Du C, et al. The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother. 2012;56(9):4862–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vergidis P, Clancy CJ, Shields RK, Park SY, Wildfeuer BN, Simmons RL, et al. Intra-abdominal candidiasis: the importance of early source control and antifungal treatment. PLoS ONE. 2016;11(4):e0153247.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lortholary O, Renaudat C, Sitbon K, Desnos-Ollivier M, Bretagne S, Dromer F, et al. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Med. 2017;43(5):652–62.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vallabhaneni S, Kallen A, Tsay S, Chow N, Welsh R, Kerins J, et al. Investigation of the first seven reported cases of Candida auris, a globally emerging invasive, multidrug-resistant fungus—United States, May 2013-August 2016. MMWR Morb Mortal Wkly Rep. 2016;65(44):1234–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Chapman B, Slavin M, Marriott D, Halliday C, Kidd S, Arthur I, et al. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017;72(4):1103–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Fu J, Ding Y, Wei B, Wang L, Xu S, Qin P, et al. Epidemiology of Candida albicans and non-C. albicans of neonatal candidemia at a tertiary care hospital in western China. BMC Infect Dis. 2017;17(1):329.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen J, Jiang Y, Wei B, Ding Y, Xu S, Qin P, et al. Epidemiology of and risk factors for neonatal candidemia at a tertiary care hospital in western China. BMC Infect Dis. 2016;16(1):700.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li Y, Du M, Chen LA, Liu Y, Liang Z. Nosocomial bloodstream infection due to Candida spp. in China: species distribution, clinical features, and outcomes. Mycopathologia. 2016;181(7–8):485–95.CrossRefPubMedGoogle Scholar
  32. 32.
    Ananda-Rajah MR, Slavin MA, Thursky KT. The case for antifungal stewardship. Curr Opin Infect Dis. 2012;25(1):107–15.CrossRefPubMedGoogle Scholar
  33. 33.
    Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the infectious diseases society of America and the society for healthcare epidemiology of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;62(10):e51–77.CrossRefGoogle Scholar
  34. 34.
    Lopez-Medrano F, San Juan R, Lizasoain M, Catalan M, Ferrari JM, Chaves F, et al. A non-compulsory stewardship programme for the management of antifungals in a university-affiliated hospital. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2013;19(1):56–61.Google Scholar
  35. 35.
    Bailly S, Maubon D, Fournier P, Pelloux H, Schwebel C, Chapuis C, et al. Impact of antifungal prescription on relative distribution and susceptibility of Candida spp.—trends over 10 years. J Infect. 2016;72(1):103–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Sipsas NV, Lewis RE, Tarrand J, Hachem R, Rolston KV, Raad II, et al. Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001–2007): stable incidence but changing epidemiology of a still frequently lethal infection. Cancer. 2009;115(20):4745–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016;7:11128.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Thakur JK, Arthanari H, Yang F, Pan SJ, Fan X, Breger J, et al. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature. 2008;452(7187):604–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Rodrigues CF, Silva S, Henriques M. Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2014;33(5):673–88.CrossRefGoogle Scholar
  40. 40.
    Le A, Kubiak D, Koo S, Farmakiotis D. Epidemiology of candidemia in hospitalized patients with acute leukemia in the absence of routine antifungal prophylaxis. Open Forum Infect Dis. 2016;3(suppl 1):1597.Google Scholar
  41. 41.
    Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;62(4):e1–50.CrossRefGoogle Scholar
  42. 42.
    Chiotos K, Vendetti N, Zaoutis TE, Baddley J, Ostrosky-Zeichner L, Pappas P, et al. Comparative effectiveness of echinocandins versus fluconazole therapy for the treatment of adult candidaemia due to Candida parapsilosis: a retrospective observational cohort study of the Mycoses Study Group (MSG-12). J Antimicrob Chemother. 2016;71(12):3536–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Fernandez-Ruiz M, Aguado JM, Almirante B, Lora-Pablos D, Padilla B, Puig-Asensio M, et al. Initial use of echinocandins does not negatively influence outcome in Candida parapsilosis bloodstream infection: a propensity score analysis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;58(10):1413–21.CrossRefGoogle Scholar
  44. 44.
    Trouve C, Blot S, Hayette MP, Jonckheere S, Patteet S, Rodriguez-Villalobos H, et al. Epidemiology and reporting of candidaemia in Belgium: a multi-centre study. Eur J Clin Microbiol Infect Dis. 2017;36(4):649–55.CrossRefGoogle Scholar
  45. 45.
    Xisto MI, Caramalho RD, Rocha DA, Ferreira-Pereira A, Sartori B, Barreto-Bergter E, et al. Pan-azole-resistant Candida tropicalis carrying homozygous erg11 mutations at position K143R: a new emerging superbug? J Antimicrob Chemother. 2017;72(4):988–92.PubMedGoogle Scholar
  46. 46.
    Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;54(8):1110–22.CrossRefGoogle Scholar
  47. 47.
    Le A, Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Initial treatment of cancer patients with fluconazole-susceptible dose-dependent Candida glabrata fungemia: better outcome with an echinocandin or polyene compared to an azole? Antimicrob Agents Chemother. 2017;61(8):00631–17.CrossRefGoogle Scholar
  48. 48.
    Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20(Suppl 3):76–98.Google Scholar
  49. 49.
    Ben-Ami R, Weinberger M, Orni-Wasserlauff R, Schwartz D, Itzhaki A, Lazarovitch T, et al. Time to blood culture positivity as a marker for catheter-related candidemia. J Clin Microbiol. 2008;46(7):2222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stempel JM, Farmakiotis D, Tarrand JJ, Kontoyiannis DP. Time-to-reporting of blood culture positivity and central venous catheter-associated Candida glabrata fungemia in cancer patients. Diagn Microbiol Infect Dis. 2016;85(3):391–3.CrossRefPubMedGoogle Scholar
  51. 51.
    Nguyen MH, Wissel MC, Shields RK, Salomoni MA, Hao B, Press EG, et al. Performance of Candida real-time polymerase chain reaction, beta-d-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54(9):1240–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Ramos JT, Villar S, Bouza E, Bergon-Sendin E, Perez Rivilla A, Collados CT, et al. Performance of a quantitative PCR-based assay and beta-d-Glucan detection for the diagnosis of invasive candidiasis in very low birth weight preterm neonatal patients (CANDINEO study). J Clin Microbiol. 2017;55(9):2752–64.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60(6):892–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med. 2013;5(182):182ra54.CrossRefPubMedGoogle Scholar
  55. 55.
    Zervou FN, Zacharioudakis IM, Kurpewski J, Mylonakis E. T2 magnetic resonance for fungal diagnosis. Methods Mol Biol. 2017;1508:305–19.CrossRefPubMedGoogle Scholar
  56. 56.
    Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Eschenauer GA, Carver PL, Lin SW, Klinker KP, Chen YC, Potoski BA, et al. Fluconazole versus an echinocandin for Candida glabrata fungaemia: a retrospective cohort study. J Antimicrob Chemother. 2013;68(4):922–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Shaoming Lin
    • 1
  • Ruilan Chen
    • 2
    • 3
    • 4
  • Song Zhu
    • 5
  • Huijun Wang
    • 1
  • Lianfang Wang
    • 1
  • Jian Zou
    • 6
  • Jingdong Yan
    • 6
  • Xiangdong Zhang
    • 7
  • Dimitrios Farmakiotis
    • 8
  • Xiaojiang Tan
    • 1
  • Eleftherios Mylonakis
    • 8
  1. 1.Department of Respiratory and Critical Care Medicine, Chronic Airways Disease Laboratory, Huiqiao Medical Center, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Intensive Care UnitFangcun Branch of Guangdong Provincial Hospital of Chinese MedicineGuangzhouPeople’s Republic of China
  3. 3.The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouPeople’s Republic of China
  4. 4.Guangdong Provincial Academy of Chinese Medical SciencesGuangzhouPeople’s Republic of China
  5. 5.District Five, Fuda Cancer HospitalJinan University School of MedicineGuangzhouPeople’s Republic of China
  6. 6.Informatics Department, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  7. 7.Southern Medical UniversityGuangzhouPeople’s Republic of China
  8. 8.Department of Medicine, Division of Infectious Diseases, Rhode Island HospitalWarren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations