Phylogenetic Diversity and In Vitro Susceptibility Profiles of Human Pathogenic Members of the Fusarium fujikuroi Species Complex Isolated from South India

  • Ananya Tupaki-Sreepurna
  • Vijayakishore Thanneru
  • Sangeetha Natarajan
  • Savitri Sharma
  • Anjana Gopi
  • Murugan Sundaram
  • Anupma Jyoti Kindo
Original Paper
  • 8 Downloads

Abstract

Availability of molecular methods, gene sequencing, and phylogenetic species recognition have led to rare fungi being recognized as opportunistic pathogens. Fungal keratitis and onychomycosis are fairly common mycoses in the tropics, especially among outdoor workers and enthusiasts. The frequently isolated etiological agents belong to genera Candida, Aspergillus, and Fusarium. Within the genus Fusarium, known to be recalcitrant to prolonged antifungal treatment and associated with poor outcome, members of the Fusarium solani species complex are reported to be most common, followed by members of the Fusarium oxysporum SC and the Fusarium fujikuroi SC (FFSC). Morphological differentiation among the various members is ineffective most times. In the present study, we describe different species of the FFSC isolated from clinical specimen in south India. All twelve isolates were characterized up to species level by nucleic acid sequencing and phylogenetic analysis. The molecular targets chosen were partial regions of the internal transcribed spacer rDNA region, the panfungal marker and translation elongation factor-1α gene, the marker of choice for Fusarium speciation. Phylogenetic analysis was executed using the Molecular Evolutionary Genetics Analysis software (MEGA7). In vitro susceptibility testing against amphotericin B, voriconazole, posaconazole, natamycin, and caspofungin diacetate was performed following the CLSI M38-A2 guidelines for broth microdilution method. The twelve isolates of the FFSC were F. verticillioides (n = 4), F. sacchari (n = 3), F. proliferatum (n = 2), F. thapsinum (n = 1), F. andiyazi (n = 1), and F. pseudocircinatum (n = 1). To the best of our knowledge, this is the first report of F. andiyazi from India and of F. pseudocircinatum as a human pathogen worldwide. Natamycin and voriconazole were found to be most active agents followed by amphotericin B. Elderly outdoor workers figured more among the patients and must be recommended protective eye wear.

Keywords

Fusarium fujikuroi species complex F. andiyazi F. pseudocircinatum Antifungal susceptibility patterns TEF-1α Phylogeny 

Notes

Acknowledgements

This study has been funded by the Indian Council of Medical Research (ICMR), New Delhi, India, through the ICMR-TSS MD-PhD Fellowship awarded to Dr. Ananya Tupaki-Sreepurna.

References

  1. 1.
    Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao GN. The epidemiological features and laboratory results of fungal keratitis. Cornea. 2002;21(6):555–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Tilak R, Singh A, Maurya OP, Chandra A, Tilak V, Gulati K. Mycotic keratitis in India: a five-year retrospective study. J Infect Dev Ctries. 2010;4(3):171–4.CrossRefPubMedGoogle Scholar
  3. 3.
    Satpathi P, Satpathi S. Letter to the editor study of microbial keratitis in central India. J Infect Dev Ctries. 2012;6(3):295–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Gajjar DU, Pal AK, Ghodadra BK, Vasavada AR. Microscopic evaluation, molecular identification, antifungal susceptibility, and clinical outcomes in Fusarium, Aspergillus and dematiaceous keratitis. Biomed Res Int. 2013;2013:605308.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tosti A, Piraccini BM, Lorenzi S. Onychomycosis caused by nondermatophytic molds: clinical features and response to treatment of 59 cases. J Am Acad Dermatol. 2000;42(2):217–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang N, O’Donnell K, Sutton DA, Nalim FA, Summerbell RC, Padhye AA, Geiser DM. Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol. 2006;44(6):2186–90.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Al-Maqtoofi M, Thornton CR. Detection of human pathogenic Fusarium species in hospital and communal sink biofilms by using a highly specific monoclonal antibody. Environ Microbiol. 2016;18(11):3620–34.  https://doi.org/10.1111/1462-2920.13233.CrossRefPubMedGoogle Scholar
  8. 8.
    Guarro J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur J Clin Microbiol Infect Dis. 2013;32(12):1491–500.CrossRefPubMedGoogle Scholar
  9. 9.
    Arrese JE, Piérard-Franchimont C, Piérard GE. Fatal hyalohyphomycosis following Fusarium onychomycosis in an immunocompromised patient. Am J Dermatopathol. 1996;18(2):196–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Esnakula AK, Summers I, Naab TJ. Fatal disseminated Fusarium infection in a human immunodeficiency virus positive patient. Case Rep Infect Dis. 2013.  https://doi.org/10.1155/2013/379320.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Al-Hatmi AM, Hagen F, Menken SB, Meis JF, De Hoog GS. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015. Emerg Microbes Infect. 2016;5(12):e124.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nucci M, Anaissie E. Fusarium infections in immunocompromised patients. Clin Microbiol Rev. 2007;20(4):695–704.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Taj-Aldeen SJ. Reduced multidrug susceptibility profile is a common feature of opportunistic Fusarium species: Fusarium multi-drug resistant pattern. J Fungi (Basel). 2017;3:18.CrossRefGoogle Scholar
  14. 14.
    Al-Hatmi AMS, Meis JF, de Hoog GS. Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog. 2016;12(4):e1005464.  https://doi.org/10.1371/journal.ppat.1005464.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O’Donnell K, Sutton DA, Rinaldi MG, Sarver BA, Balajee SA, Schroers HJ, et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol. 2010;48(10):3708–18.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kvas M, Marasas WF. Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers. 2009;34:1–21.Google Scholar
  17. 17.
    O’Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia. 1998;90:465–93.CrossRefGoogle Scholar
  18. 18.
    O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA. 1998;95:2044–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Niehaus E-M, Münsterkötter M, Proctor RH, et al. Comparative “Omics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol. 2016;8(11):3574–99.  https://doi.org/10.1093/gbe/evw259.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Al-Hatmi AMS, Bonifaz A, de Hoog GS, Vazquez-Maya L, Garcia-Carmona K, Meis JF, et al. Keratitis by Fusarium temperatum, a novel opportunist. BMC Infect Dis. 2014;14(1):588.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moroti RV, Gheorghita V, Al-Hatmi AMS, de Hoog GS, Meis JF, Netea MG. Fusarium ramigenum, a novel human opportunist in a patient with common variable immunodeficiency and cellular immune defects: case report. BMC Infect Dis. 2016;16:79.  https://doi.org/10.1186/s12879-016-1382-9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    van Diepeningen AD, Al-Hatmi AMS, Brankovics B, de Hoog GS. Taxonomy and clinical spectra of Fusarium species: where do we stand in 2014? Curr Clin Microbiol Rep. 2014;1(1–2):10–8.CrossRefGoogle Scholar
  23. 23.
    Geiser DM, Jiménez-Gasco MDM, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, et al. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 2004;110(5–6):473–9.CrossRefGoogle Scholar
  24. 24.
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
  26. 26.
    Dopazo J. Estimating errors and confidence intervals for branch lengths in phylogenetic trees by a bootstrap approach. J Mol Evol. 1994;38:300–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol. 1992;9:945–67.Google Scholar
  28. 28.
    Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101:11030–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rex JH, Ghannoum MA, Alexander BD, Knapp CC, Andes D, Motyl MR, et al. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard-CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute (CLSI); 2008. p. 52.Google Scholar
  30. 30.
    Espinel-Ingroff A, Fothergill A, Ghannoum M, Manavathu E, Ostrosky-Zeichner L, Pfaller MA, et al. Quality control and reference guidelines for CLSI broth microdilution method (M38-A document) for susceptibility testing of anidulafungin against molds. J Clin Microbiol. 2007;45(7):2180–2.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Homa M, Shobana CS, Singh YRB, Manikandan P, Selvam KP, Kredics L, et al. Fusarium keratitis in south India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex. Mycoses. 2013;56(5):501–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Walther G, Stasch S, Kaerger K, Hamprecht A, Roth M, Cornely OA, Geerling G, Mackenzie CR, Kurzai O, von Lilienfeld-Toal M. Fusarium keratitis in Germany. J Clin Microbiol. 2017;55(10):2983–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Maertens JA. History of the development of azole derivatives. Clin Microbiol Infect. 2004;10(Suppl 1):1–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Rheeder JP, Marasas WF, Vismer HF. Production of fumonisin analogs by Fusarium species. Appl Environ Microbiol. 2002;68(5):2101–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    O’Donnell K, Cigelnik E. Two divergent intragenomic rDNA ITS2 types within a mono-phyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol. 1997;7:103–16.CrossRefPubMedGoogle Scholar
  36. 36.
    Geiser DM, Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K. FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol. 2004;110:473–9.CrossRefGoogle Scholar
  37. 37.
    Al-Hatmi AMS, Van Diepeningen AD, Curfs-Breuker I, de Hoog GS, Meis JF. Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother. 2015;70(4):1068–71.PubMedGoogle Scholar
  38. 38.
    Espinel-Ingroff A, Colombo AL, Cordoba S, Dufresne PJ, Fuller J, Ghannoum M, Gonzalez GM, Guarro J, Kidd SE, Meis JF, Melhem TM. International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob Agents Chemother. 2016;60(2):1079–84.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Macêdo DP, Neves RP, Fontan J, Souza-Motta CM, Lima D. A case of invasive rhinosinusitis by Fusarium verticillioides (Saccardo) Nirenberg in an apparently immunocompetent patient. Med Mycol. 2008;46(5):499–503.CrossRefPubMedGoogle Scholar
  40. 40.
    Dornbusch HJ, Buzina W, Summerbell RC, Lass-Flörl C, Lackner H, Schwinger W, Sovinz P, Urban C. Fusarium verticillioides abscess of the nasal septum in an immunosuppressed child: case report and identification of the morphologically atypical fungal strain. J Clin Microbiol. 2005;43(4):1998–2001.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Collins MS, Rinaldi MG. Cutaneous infection in man caused by Fusarium moniliforme. Sabouraudia. 1977;15(2):151–60.CrossRefPubMedGoogle Scholar
  42. 42.
    Cocchi S, Codeluppi M, Venturelli C, Bedini A, Grottola A, Gennari W, Cavrini F, Di Benedetto F, De Ruvo N, Rumpianesi F, Gerunda GE. Fusarium verticillioides fungemia in a liver transplantation patient: successful treatment with voriconazole. Diagn Microbiol Infect Dis. 2011;71(4):438–41.CrossRefPubMedGoogle Scholar
  43. 43.
    Bansal Y, Chander J, Kaistha N, Singla N, Sood S, Diepeningen AD. Fusarium sacchari, a cause of mycotic keratitis among sugarcane farmers—a series of four cases from North India. Mycoses. 2016;59(11):705–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Guarro J, Nucci M, Akiti T, Gené J, Barreiro MD, Gonçalves RT. Fungemia due to Fusarium sacchari in an immunosuppressed patient. J Clin Microbiol. 2000;38(1):419–21.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Summerbell RC, Richardson SE, Kane J. Fusarium proliferatum as an agent of disseminated infection in an immunosuppressed patient. J Clin Microbiol. 1988;26(1):82–7.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Ferrer C, Alio J, Rodriguez A, Andreu M, Colom F. Endophthalmitis caused by Fusarium proliferatum. J Clin Microbiol. 2005;43(10):5372–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kebabcı N, Diepeningen AD, Ener B, Ersal T, Meijer M, Al-Hatmi A, Özkocaman V, Ursavaş A, Çetinoğlu ED, Akalın H. Fatal breakthrough infection with Fusarium andiyazi: new multi-resistant aetiological agent cross-reacting with Aspergillus galactomannan enzyme immunoassay. Mycoses. 2014;57(4):249–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Freeman S, Otero-Colina G, Rodríguez-Alvarado G, Fernández-Pavía S, Maymon M, Ploetz RC, Aoki T, O’Donnell K. First report of mango malformation disease caused by Fusarium pseudocircinatum in Mexico. Plant Dis. 2014;98(11):1583.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Sri Ramachandra Medical College and Research InstituteSri Ramachandra UniversityPorur, ChennaiIndia
  2. 2.Jhaveri Microbiology CentreLV Prasad Eye InstituteHyderabadIndia
  3. 3.Department of MicrobiologyKempegowda Institute of Medical SciencesBengaluruIndia
  4. 4.Department of Dermatology, Venereology and Leprosy, Sri Ramachandra Medical College and Research InstituteSri Ramachandra UniversityPorur, ChennaiIndia

Personalised recommendations