Advertisement

Mycopathologia

, Volume 183, Issue 3, pp 499–511 | Cite as

Comparative Study of the Effects of Fluconazole and Voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa Biofilms

  • Priya Madhavan
  • Farida Jamal
  • Chong Pei Pei
  • Fauziah Othman
  • Arunkumar Karunanidhi
  • Kee Peng Ng
Original Paper
  • 238 Downloads

Abstract

Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.

Keywords

Biofilms Non-albicans Candida Fluconazole Voriconazole XTT assay Electron microscopy 

Notes

Acknowledgements

The authors are grateful to the staff of the Microscopy Unit, Institute of Biosciences, Universiti Putra Malaysia, for their expert technical assistance. We are also thankful to Glenmark Generics Limited, India, for the kind gift of voriconazole powder used in this study.

Funding

This work was supported by Universiti Putra Malaysia (UPM) through the Research University Grant Scheme (RUGS No. 9333100) funded by the Ministry of Higher Education (MOHE), Putrajaya, Malaysia.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Tortora GJ, Funke BR, Case CL. Principles of diseases and epidemiology. In: Microbiology: an introduction. 11th ed. Benjamin Cummings: Pearson; 2012. p. 422–3.Google Scholar
  2. 2.
    Ortega M, Marco F, Soriano A, Almela M, Martinez JA, Lopez J, Pitart C, Mensa J. Candida species bloodstream infection: epidemiology and outcome in a single institution from 1991 to 2008. J Hosp Infect. 2011;77(2):157–61.CrossRefPubMedGoogle Scholar
  3. 3.
    Deorukhkar SC, Saini S. Medical device-associated Candida infections in a rural tertiary care teaching hospital of India. Interdiscip Perspect Infect Dis. 2016;2016:1854673.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014;4(10):a019729.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ramage G, Martinez JP, Lopez-Ribot JL. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 2006;6(7):979–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385–94.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Cuellar-Cruz M, Vega-Gonzalez A, Mendoza-Novelo B, Lopez-Romero E, Ruiz-Baca E, Quintanar-Escorza MA, Villagomez-Castro JC. The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. Eur J Clin Microbiol Infect Dis. 2012;31(10):2513–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Kuhn DM, Ghannoum MA. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs. 2004;5(2):186–97.PubMedGoogle Scholar
  9. 9.
    Lai CC, Wang CY, Liu WL, Huang YT, Hsueh PR. Time to positivity of blood cultures of different Candida species causing fungaemia. J Med Microbiol. 2012;61(Pt 5):701–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL. Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis. 2010;51(5):561–70.CrossRefPubMedGoogle Scholar
  11. 11.
    Canton E, Peman J, Quindos G, Eraso E, Miranda-Zapico I, Alvarez M, Merino P, Campos-Herrero I, Marco F, de la Pedrosa EG, Yague G, Guna R, Rubio C, Miranda C, Pazos C, Valssco D, FUNGEMYCA Study Group. Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother. 2011;55(12):5590–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    da Silva BV, Silva LB, de Oliveira DB, da Silva PR, Ferreira-Paim K, Andrade-Silva LE, Silva-Vergara ML, Andrade AA. Species distribution, virulence factors, and antifungal susceptibility among Candida parapsilosis complex isolates recovered from clinical specimens. Mycopathologia. 2015;180(5–6):333–43.CrossRefPubMedGoogle Scholar
  13. 13.
    Ziccardi M, Souza LO, Gandra RM, Galdino AC, Baptista AR, Nunes AP, Ribeiro MA, Branquinha MH, Santos AL. Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: species distribution, antifungal susceptibility and virulence attributes. Int J Med Microbiol. 2015;305(8):848–59.CrossRefPubMedGoogle Scholar
  14. 14.
    Madhavan P, Jamal F, Chong PP, Ng KP. Identification of local clinical Candida isolates using CHROMagar Candida as a primary identification method for various Candida species. Trop Biomed. 2011;28(2):269–74.PubMedGoogle Scholar
  15. 15.
    Pires-Goncalves RH, Miranda ET, Baeza LC, Matsumoto MT, Zaia JE, Mendes-Giannini MJ. Genetic relatedness of commensal strains of Candida albicans carried in the oral cavity of patients’ dental prosthesis users in Brazil. Mycopathologia. 2007;164(6):255–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Martins CH, Pires RH, Cunha AO, Pereira CA, Singulani JL, Abrao F, Moraes T, Mendes-Giannini MJS. Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm. Fungal Biol. 2016;120(4):530–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Zahran KM, Agban MN, Ahmed SH, Hassan EA, Sabet MA. Patterns of Candida biofilm on intrauterine devices. J Med Microbiol. 2015;64(Pt 4):375–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL. In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother. 2002;46(11):3591–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Derengowski Lda S, Pereira AL, Andrade AC, Kyaw CM, Silva-Pereira I. Propranolol inhibits Candida albicans adherence and biofilm formation on biotic and abiotic surfaces. Int J Antimicrob Agents. 2009;34(6):619–21.PubMedGoogle Scholar
  20. 20.
    Rane HS, Bernardo SM, Walraven CJ, Lee SA. In vitro analyses of ethanol activity against Candida albicans biofilms. Antimicrob Agents Chemother. 2012;56(8):4487–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Walraven CJ, Lee SA. Antifungal lock therapy. Antimicrob Agents Chemother. 2013;57(1):1–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Raad II, Hachem RY, Hanna HA, Fang X, Jiang Y, Dvorak T, Sheretz RJ, Kontoyiannis DP. Role of ethylene diamine tetra-acetic acid (EDTA) in catheter lock solutions: EDTA enhances the antifungal activity of amphotericin B lipid complex against Candida embedded in biofilm. Int J Antimicrob Agents. 2008;32(6):515–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Shalini K, Kumar N, Drabu S, Sharma PK. Advances in synthetic approach to and antifungal activity of triazoles. Beilstein J Org Chem. 2011;7:668–77.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Scorzoni L, de Lucas MP, Mesa-Arango AC, Fusco-Almeida AM, Lozano E, Cuenca-Estrella M, Mendes-Giannini MJ, Zaragoza O. Antifungal efficacy during Candida krusei infection in non-conventional models correlates with the yeast in vitro susceptibility profile. PLoS ONE. 2013;8(3):e60047.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol. 2012;50(4):1199–203.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chow BD, Linden JR, Bliss JM. Candida parapsilosis and the neonate: epidemiology, virulence and host defense in a unique patient setting. Expert Rev Anti Ther. 2012;10(8):935–46.CrossRefGoogle Scholar
  27. 27.
    CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. In: Proceedings of the 22nd informational supplement M100-S22, CLSI, Wayne, PA, USA. 2012; 32(2).Google Scholar
  28. 28.
    Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot JL. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494–500.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL. A novel small molecule inhibitor of Candida albicans Biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes. 2015;1:15012.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dykstra MJ. A manual of applied techniques for biological electron microscopy. New York: Plenum Press; 1993.CrossRefGoogle Scholar
  31. 31.
    Mares D. Electron microscopy of Microsporum cookei after ‘in vitro’ treatment with protoanemonin: a combined SEM and TEM study. Mycopathologia. 1989;108(1):37–46.CrossRefPubMedGoogle Scholar
  32. 32.
    Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW. Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol. 2002;40(4):1244–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62(3):915–21.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Parahitiyawa NB, Samaranayake YH, Samaranayake LP, Ye J, Tsang PW, Cheung BP, Yau JY, Yeung SK. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS. 2006;114(4):298–306.CrossRefPubMedGoogle Scholar
  35. 35.
    Sanchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R. Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol. 2013;58(10):1318–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Sanati H, Belanger P, Fratti R, Ghannoum M. A new triazole, voriconazole (UK-109,496), blocks sterol biosynthesis in Candida albicans and Candida krusei. Antimicrob Agents Chemother. 1997;41(11):2492–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bhatt M, Sarangi G, Paty BP, Mohapatra D, Chayani N, Mahapatra A, Das P, Sahoo D. Biofilm as a virulence marker in Candida species in Nosocomial blood stream infection and its correlation with antifungal resistance. Indian J Med Microbiol. 2015;33(Suppl):112–4.CrossRefPubMedGoogle Scholar
  38. 38.
    Enger L, Joly S, Pujol C, Simonson P, Pfaller M, Soll DR. Cloning and characterization of a complex DNA fingerprinting probe for Candida parapsilosis. J Clin Microbiol. 2001;39(2):658–69.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lott TJ, Kuykendall RJ, Welbel SF, Pramanik A, Lasker BA. Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet. 1993;23(5–6):463–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Laffey SF, Butler G. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology. 2005;151(Pt 4):1073–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Butler G, Sullivan DJ. Comparative genomics of Candida species. In: Enfert and Hube’s Candida: comparative and functional genomics. U.K.: Caister Academic Press; 2007.Google Scholar
  42. 42.
    Seker E, Ozenc E. In vitro biofilm activity of Candida species isolated from Anatolian buffaloes with mastitis in Western Turkey. Veterinarski Arhiv. 2011;N81(6):723–30.Google Scholar
  43. 43.
    Kuchma SL, O’Toole GA. Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol. 2000;11(5):429–33.CrossRefPubMedGoogle Scholar
  44. 44.
    Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhao X, Oh SH, Yeater KM, Hoyer LL. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology. 2005;151(Pt 5):1619–30.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Seneviratne CJ, Jin L, Samaranayake LP. Biofilm lifestyle of Candida: a mini review. Oral Dis. 2008;14(7):582–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70(2):878–88.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. Proteomics of drug resistance in Candida glabrata biofilms. Proteomics. 2010;10(7):1444–54.CrossRefPubMedGoogle Scholar
  49. 49.
    Mukherjee PK, Chandra J. Candida biofilm resistance. Drug Resist Updat. 2004;7(4–5):301–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012;2012:528521.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Perumal P, Mekala S, Chaffin WL. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother. 2007;51(7):2454–63.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Taff HT, Mitchell KF, Edward JA, Andes DR. Mechanisms of Candida biofilm drug resistance. Future Microbiol. 2013;8(10):1325–37.CrossRefPubMedGoogle Scholar
  53. 53.
    Sardi JC, Almeida AM, Mendes Giannini MJ. New antimicrobial therapies used against fungi present in subgingival sites—a brief review. Arch Oral Biol. 2011;56(10):951–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Valentin A, Canton E, Peman J, Martinez JP. Voriconazole inhibits biofilm formation in different species of the genus Candida. J Antimicrob Chemother. 2012;67(10):2418–23.CrossRefPubMedGoogle Scholar
  55. 55.
    Belanger P, Nast CC, Fratti R, Sanati H, Ghannoum M. Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and -resistant Candida species. Antimicrob Agents Chemother. 1997;41(8):1840–2.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Koul A, Vitullo J, Reyes G, Ghannoum M. Effects of voriconazole on Candida glabrata in vitro. J Antimicrob Chemother. 1999;44(1):109–12.CrossRefPubMedGoogle Scholar
  57. 57.
    Pancaldi S, Dall’Olio G, Poli F, Fasulo MP. Stimulation of the autophagic activity in blastospores of Candida albicans exposed in vitro to fluconazole. Microbios. 1994;80(322):55–61.PubMedGoogle Scholar
  58. 58.
    Kumar D, Banerjee T, Chakravarty J, Singh SK, Dwivedi A, Tilak R. Identification, antifungal resistance profile, in vitro biofilm formation and ultrastructural characteristics of Candida species isolated from diabetic foot patients in Northern India. Indian J Med Microbiol. 2016;34(3):308–14.CrossRefPubMedGoogle Scholar
  59. 59.
    Silling G. Fluconazole: optimized antifungal therapy based on pharmacokinetics. Mycoses. 2002;45(3):39–41.CrossRefPubMedGoogle Scholar
  60. 60.
    Donnelly JP, De Pauw BE. Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect. 2004;10(1):107–17.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Priya Madhavan
    • 1
    • 2
  • Farida Jamal
    • 2
  • Chong Pei Pei
    • 3
  • Fauziah Othman
    • 4
  • Arunkumar Karunanidhi
    • 2
    • 5
  • Kee Peng Ng
    • 6
  1. 1.School of Medicine, Faculty of Health and Medical SciencesTaylor’s UniversitySubang JayaMalaysia
  2. 2.Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Department of Human Anatomy, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  5. 5.Department of Pharmacology and Chemistry, Faculty of PharmacyUniversiti Teknologi MARABandar Puncak AlamMalaysia
  6. 6.Department of Medical Microbiology, Faculty of MedicineUniversity of MalayaLembah Pantai, Kuala LumpurMalaysia

Personalised recommendations