Skip to main content

Advertisement

Log in

Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Scedosporium species are opportunistic pathogens responsible for a large variety of infections in humans. An increasing occurrence was observed in patients with underlying conditions such as immunosuppression or cystic fibrosis. Indeed, the genus Scedosporium ranks the second among the filamentous fungi colonizing the respiratory tracts of the CF patients. To date, there is very scarce information on the pathogenic mechanisms, at least in part because of the limited genetic tools available. In the present study, we successfully developed an efficient transformation and targeted gene disruption approach on the species Scedosporium aurantiacum. The disruption cassette was constructed using double-joint PCR procedure, and resistance to hygromycin B as the selection marker. This proof of concept was performed on the functional gene SODC encoding the Cu,Zn-superoxide dismutase. Disruption of the SODC gene improved susceptibility of the fungus to oxidative stress. This technical advance should open new research areas and help to better understand the biology of Scedosporium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gilgado F, Cano J, Gené J, Guarro J. Molecular phylogeny of the Pseudallescheria boydii species complex: proposal of two new species. J Clin Microbiol. 2005;43:4930–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilgado F, Cano J, Gené J, Sutton DA, Guarro J. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii. J Clin Microbiol. 2008;46:766–71.

    Article  PubMed  Google Scholar 

  3. Lackner M, de Hoog GS, Yang L, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers. 2014;67:1–10.

    Article  Google Scholar 

  4. Guarro J, Kantarcioglu AS, Horré R, et al. Scedosporium apiospermum: changing clinical spectrum of a therapy-refractory opportunist. Med Mycol. 2006;44:295–327.

    Article  PubMed  Google Scholar 

  5. Ansari RA, Hindson DA, Stevens DL, Kloss JG. Pseudallescheria boydii arthritis and osteomyelitis in a patient with Cushing’s disease. South Med J. 1987;80:90–2.

    Article  CAS  PubMed  Google Scholar 

  6. Pihet M, Carrère J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. Med Mycol. 2009;47:387–97.

    Article  PubMed  Google Scholar 

  7. Giraud S, Bouchara JP. Scedosporium apiospermum complex: diagnosis and species identification. Curr Fungal Infect Rep. 2014;8:211–9.

    Article  Google Scholar 

  8. Vandeputte P, Ghamrawi S, Rechenmann M, et al. Draft genome sequence of the pathogenic fungus Scedosporium apiospermum. Genome Announc. 2014;2:e00988-14.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pérez-Bercoff A, Papanicolaou A, Ramsperger M, et al. Draft genome of Australian environmental strain WM 09.24 of the opportunistic human pathogen Scedosporium aurantiacum. Genome Announc. 2015;3:e01526-14.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu JH, Hamari Z, Han KH, et al. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol. 2004;41:973–81.

    Article  CAS  PubMed  Google Scholar 

  11. Kim MS, Kim SY, Yoon JK, et al. An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res Commun. 2009;390:983–8.

    Article  CAS  PubMed  Google Scholar 

  12. Gralla EB, Valentine JS. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol. 1991;173:5918–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hwang CS, Rhie G, Kim ST, et al. Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans. Biochim Biophys Acta. 1999;1427:245–55.

    Article  CAS  PubMed  Google Scholar 

  14. Narasipura SD, Ault JG, Behr MJ, Chaturvedi V, Chaturvedi S. Characterization of Cu, Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence: Cn var. gatti sod1. Mol Microbiol. 2003;47:1681–94.

    Article  CAS  PubMed  Google Scholar 

  15. Hamilton AJ, Holdom MD, Jeavons L. Expression of the Cu, Zn superoxide dismutase of Aspergillus fumigatus as determined by immunochemistry and immunoelectron microscopy. FEMS Immunol Med Microbiol. 1996;14:95–102.

    Article  CAS  PubMed  Google Scholar 

  16. Staerck C, Vandeputte P, Gastebois A, et al. Enzymatic mechanisms involved in evasion of fungi to the oxidative stress: focus on Scedosporium apiospermum. Mycopathologia. 2017;. doi:10.10007/s11046-017-0160-6.

    PubMed  Google Scholar 

  17. Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficiencies. Eur J Pediatr. 2007;166:1099–117.

    Article  PubMed  Google Scholar 

  18. Cortez KJ, Roilides E, Quiroz-Telles F, et al. Infections caused by Scedosporium spp. Clin Microbiol Rev. 2008;21:157–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sweigard JA, Carroll AM, Kang S, et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell. 1995;7:1221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turgeon BG, Condon B, Liu J, Zhang Z. Protoplast transformation of filamentous fungi. Methods Mol Biol. 2010;638:3–19.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Z, Friesen TL. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol. 2012;835:365–75.

    Article  CAS  PubMed  Google Scholar 

  22. Ghamrawi S, Gastebois A, Zykwinska A, et al. A multifaceted study of Scedosporium boydii cell wall changes during germination and identification of GPI-anchored proteins. PLoS ONE. 2015;10:e0128680.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Joubert A, Calmes B, Berruyer R, et al. Laser nephelometry applied in an automated microplate system to study filamentous fungus growth. Biotechniques. 2010;48:399–404.

    Article  CAS  PubMed  Google Scholar 

  24. Youseff BH, Holbrook ED, Smolnycki KA, Rappleye CA. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 2012;8:e1002713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Briones-Martin-Del-Campo M, Orta-Zavalza E, Juarez-Cepeda J, et al. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev Iberoam Micol. 2014;31:67–71.

    Article  PubMed  Google Scholar 

  26. Crawford DR, Davies KJ. Adaptive response and oxidative stress. Environ Health Perspect. 1994;102(Suppl 10):25–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhao X, Xue C, Kim Y, Xu JR. A ligation-PCR approach for generating gene replacement constructs in Magnaporthe grisea. Fungal Genet Rep. 2004;51:17–8.

    Article  Google Scholar 

  28. Tan KC, Heazlewood JL, Millar AH, et al. A signaling-regulated, short-chain dehydrogenase of Stagonospora nodorum regulates asexual development. Eukaryot Cell. 2008;7:1916–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feng J, Li W, Hwang SF, Gossen BD, Strelkov SE. Enhanced gene replacement frequency in KU70 disruption strain of Stagonospora nodorum. Microbiol Res. 2012;167:173–8.

    Article  CAS  PubMed  Google Scholar 

  30. Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem Sci. 1998;23:394–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA. 2004;101:12248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krappmann S, Sasse C, Braus GH. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell. 2006;5:212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shahana S, Childers DS, Ballou ER, et al. New Clox Systems for rapid and efficient gene disruption in Candida albicans. PLoS ONE. 2014;9:e100390.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meyer V. Genetic engineering of filamentous fungi: progress, obstacles and future trends. Biotechnol Adv. 2008;26:177–85.

    Article  CAS  PubMed  Google Scholar 

  35. Bird D, Bradshaw R. Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet. 1997;255:219–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TEM experiments were performed at SCIAM (Service Commun d’Imagerie et d’Analyses Microscopiques) platform, in Angers University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Giraud.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pateau, V., Razafimandimby, B., Vandeputte, P. et al. Gene Disruption in Scedosporium aurantiacum: Proof of Concept with the Disruption of SODC Gene Encoding a Cytosolic Cu,Zn-Superoxide Dismutase. Mycopathologia 183, 241–249 (2018). https://doi.org/10.1007/s11046-017-0204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-017-0204-y

Keywords

Navigation