, Volume 182, Issue 3–4, pp 285–295 | Cite as

Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains

  • Patrícia Pimentel de Barros
  • Rodnei Dennis Rossoni
  • Felipe De Camargo Ribeiro
  • Juliana Campos Junqueira
  • Antonio Olavo Cardoso Jorge


The characterization of Candida albicans strains with different degrees of virulence became very useful to understand the mechanisms of fungal virulence. Then, the objective of this study was to assess and compare the temporal profiles of biofilms formation, gene expression of ALS1, ALS3, HWP1, BCR1, EFG1, TEC1, SAP5, PLB2 and LIP9 and virulence in Galleria mellonella of C. albicans ATCC18804 and a clinical sample isolated from an HIV-positive patient (CA60). Although the CFU/mL counting was higher in biofilms formed in vitro by ATCC strain, the temporal profile of the analysis of the transcripts of the C. albicans strains was elevated to Ca60 compared to strain ATCC, especially in the genes HWP1, ALS3, SAP5, PLB2 and LIP9 (up regulation). Ca60 was more pathogenic for G. mellonella in the survival assay (p = 0.0394) and hemocytes density (p = 0.0349), agreeing with upregulated genes that encode the expression of hyphae and hydrolase genes of Ca60. In conclusion, the C. albicans strains used in this study differ in the amount of biofilm formation, virulence in vivo and transcriptional profiles of genes analyzed that can change factors associated with colonization, proliferation and survival of C. albicans at different niches. SAP5 and HWP1 were the genes more expressed in the formation of biofilm in vitro.


Candida albicans Biofilms Gene expression Galleria mellonella 



We acknowledge the São Paulo Council of Research—FAPESP, Brazil (Grants 2011/15194-0, 2012/15250-0 and 2012/02184-9) for supporting this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Colombo AL, Guimarães T, Camargo LFA, et al. Brazilian guidelines for the management of candidiasis: a joint meeting report of three medical societies. Braz J Infect Dis. 2013;17:283–312.CrossRefPubMedGoogle Scholar
  2. 2.
    Mayer LF, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–28.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Agwu E, Ihongbe JC, McManus BA, et al. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda. Med Mycol. 2012;50:276–80.CrossRefPubMedGoogle Scholar
  4. 4.
    Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.CrossRefPubMedGoogle Scholar
  5. 5.
    Hube B. From comensal to pathogen: stage-and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7:336–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Hasan F, Xess I, Wang X, Jain N, Fries BC. Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect. 2009;11:753–61.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9:109–18.CrossRefPubMedGoogle Scholar
  8. 8.
    Fox PE, Nobile JC. A sticky situation: untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription. 2012;3:315–22.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nobile CJ, Mitchell AP. Regulation of cell surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol. 2005;15:1150–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8:1382–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2:e63.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nobile CJ, Fox EP, Nett JE, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148:126–38.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pierce VJ, Kumamoto AC. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio. 2012;3:e00117-12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fanning S, Xu W, Solis N, Woolford CA, et al. Divergent targets of Candida albicans biofilm regulator Bcr1 in vitro and in vivo. Eukar Cell. 2012;11:896–904.CrossRefGoogle Scholar
  15. 15.
    Naglik JR, Rodgers CA, Shirlaw PJ, et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in human correlates with active oral and vaginal infections. J Infect Dis. 2003;188:469–79.CrossRefPubMedGoogle Scholar
  16. 16.
    Naglik JR, Challacombe SJ, Hube B. Candida albicans aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol. 2003;67:400–28.CrossRefGoogle Scholar
  17. 17.
    Naglik JR, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004;6:915–26.CrossRefPubMedGoogle Scholar
  18. 18.
    Naglik JR, Moyes D, Makwana J, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology. 2008;154:3266–80.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nailis H, Kucharíková S, Řičicová M, et al. Real- time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 2010;10:114.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chamilos G, Lionakis MS, Lewis RE, Kontoyiannis DP. Role of mini-host models in the study of medically important fungi. Lancet Infect Dis. 2007;7:42–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Arvantis M, Glavis-Bloom J, Mylonakis E. C.elegans for anti-infective discovery. Curr Opin Pharmacol. 2013;13:769–74.CrossRefGoogle Scholar
  22. 22.
    Fedhila S, Buisson C, Dussurget O, et al. Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. J Invertebr Pathol. 2010;103:24–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Chibebe Junior J, Fuchs BB, Sabino CP, et al. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS ONE. 2013;8(2):e55926.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chibebe Junior J, Sabino CP, Tan X, et al. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol. 2013;13:217.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Junqueira JC, Fuchs BB, Muhammed M, et al. Oral Candida albicans from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates. BMC Microbiol. 2011;4:247.CrossRefGoogle Scholar
  27. 27.
    Seneviratne CJ, Silva WJ, Jin LJ, et al. Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Arch Oral Biol. 2009;54:1052–60.CrossRefPubMedGoogle Scholar
  28. 28.
    Costa ACBP, Pereira AC, Freire F, et al. Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses. 2013;56:614–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Nailis H, Coenye T, Van Nieuwerburgh F, et al. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real- time PCR. BMC Mol Biol. 2006;4:7–25.CrossRefGoogle Scholar
  30. 30.
    Hnisz D, Bardet AF, Nobile CJ, et al. A Histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet. 2012;8:e1003118.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol. 2000;27:163–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5:608–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Taff HT, Nett JE, Andes DR. Comparative analysis of Candida biofilm quantitation assays. Med Mycol. 2012;50:214–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Ramage G, VandeWalle K, Wickes LB, López RJC. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 2001;18:163–70.PubMedGoogle Scholar
  36. 36.
    Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sánchez-Vargas LO, Estrada-Barraza D, Pozos-Guillen AJ, Rivas-Caceres R. Biofilm formation by oral clinical isolates of Candida species. Arch Oral Biol. 2013;58:1318–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Ding X, Liu Z, Su J, Yan D. Human serum inhibits adhesion and biofilm formation in Candida albicans. BMC Microbiol. 2014;14:80.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Buu LM, Chen YC. Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans. J Biomed Sci. 2014;21:22.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Semlali A, Killer K, Alanazi H, Chmielewski W, et al. Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression. BMC Microbiol. 2014;14:61.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yeater KM, Chandra J, Cheng G, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153:2373–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Samaranayake YH, Cheung BPK, Yau JYY, et al. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE. 2013;8:e62902.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vilela SF, Barbosa JO, Rossoni RD, et al. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015;6:29–39.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rossoni RD, Barbosa JO, Vilela SFG, et al. Competitive Interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental Candidiasis. PLoS ONE. 2015;10:e0131700.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bergin D, Brennan M, Kavanagh K. Fluctuations in haemocyte density and microbial load may be used as indicators of fungal pathogenicity in larvae of Galleria mellonella. Microbes Infect. 2003;5:1389–95.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Patrícia Pimentel de Barros
    • 1
  • Rodnei Dennis Rossoni
    • 1
  • Felipe De Camargo Ribeiro
    • 1
  • Juliana Campos Junqueira
    • 1
  • Antonio Olavo Cardoso Jorge
    • 1
  1. 1.Departament of Biosciences and Oral Diagnosis, Institute of Science and TechnologyUNESP – Univ Estadual PaulistaSão José Dos CamposBrazil

Personalised recommendations