, Volume 181, Issue 11–12, pp 865–869 | Cite as

In Vitro Activity of Melaleuca alternifolia (Tea Tree) in Its Free Oil and Nanoemulsion Formulations Against Pythium insidiosum

  • Júlia de Souza Silveira Valente
  • Anelise de Oliveira da Silva Fonseca
  • Carolina Litchina Brasil
  • Lauren Sagave
  • Fernanda Cramer Flores
  • Cristiane de Bona da  Silva
  • Luís Antônio Sangioni
  • Luciana Pötter
  • Janio Morais Santurio
  • Sônia de Avila Botton
  • Daniela Isabel Brayer Pereira


Pythium insidiosum is an important aquatic oomycete which can cause pythiosis in both animals and humans. This microorganism shows low susceptibility to antifungal drugs available. This study analyzed the in vitro antimicrobial activity of Melaleuca alternifolia in its free oil (FO) and nanoemulsion (NE) formulations against Brazilian P. insidiosum isolates. The antimicrobial activity evaluation was performed by the broth microdilution method according to CSLI M38-A2 document adapted to phytopharmaceuticals. Twenty-six P. insidiosum isolates were evaluated, and the minimum inhibitory concentration was determined at 100 % growth inhibition. Melaleuca alternifolia essential oil or FO was obtained commercially. The NE containing 1 % M. alternifolia essential oil was prepared by the spontaneous emulsification method. All P. insidiosum isolates evaluated showed minimum inhibitory concentrations (MIC) ranging from 531.5 to 2125 μg/mL for the FO formulation; MIC50 and MIC90 showed values between 1062.5 and 2125 μg/mL, respectively. When the NE formulation was evaluated, MIC values ranged from 132.7 to 2125 μg/mL and both MIC50 and MIC90 corresponded to 1062.5 μg/mL. FO and NE formulations of M. alternifolia showed antimicrobial activity against P. insidiosum. This study demonstrated that M. alternifolia oil can be an additional therapy in pythiosis treatment; however, further studies are needed to evaluate the applicability of the plant essential oils in the treatment of clinical pythiosis.


Oomycete Pythiosis Medicinal plants Nanostructured systems 



The authors are grateful to Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [Process: 442,020/2014-7] for their financial support, and student and research grants.

Compliance with Ethical Standards

Conflicts of interest

None of the authors of this manuscript has a financial or personal relationship with other people or organizations that could inappropriately influence the content of this work.


  1. 1.
    Gaastra W, Lipman LJA, De Cock AWAM, Exel TK, Pegge RBG, Scheurwater J, Vilela R, Mendoza L. Pythium insidiosum: an overview. Vet Microbiol. 2010;146:1–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Grooters AM. Pythiosis, lagenidiosis, and zygomycosis in small animals. Vet Clin North Am. 2003;33:695–720.CrossRefGoogle Scholar
  3. 3.
    Fonseca AOF, Pereira DIB, Jacob RG, Maia Filho FS, Oliveira DH, Maroneze BP, Valente JSS, Osório LG, Botton SA, Meireles MCA. In vitro susceptibility of Brazilian Pythium insidiosum isolates to essential oils of some Lamiaceae family species. Mycopathologia. 2015;179:253–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Fonseca AOS, Pereira DIB, Botton SA, Pötter L, Sallis ESV, Júnior SFV, Filho FSM, Zambrano CG, Maroneze BP, Valente JSS, Baptista CT, Braga CQ, Dal Ben V, Meireles MCA. Treatment of experimental pythiosis with essential oils of Origanum vulgare and Mentha piperita singly, in association and in combination with immunotherapy. Vet Microbiol. 2015;5:265–9.CrossRefGoogle Scholar
  5. 5.
    Jesus FP, Ferreiro L, Bizzi KS, Loreto ES, Pilotto MB, Ludwing A, Alves SH, Zanette RA, Santurio JM. In vitro activity of carvacrol and thymol combined with antifungals or antibacterials against Pythium insidiosum. J Mycol Med. 2014;25:89–93.CrossRefGoogle Scholar
  6. 6.
    Sriphana U, Thongsri Y, Ardwichai P, Poopasit K, Prariyachatigul C, Simasathiansopion S, Yenjai C. New ligman esters from Alyxia schlechteri and antifungal activity against Pythium insidiosum. Fitoterapia. 2013;91:39–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Suthiwong J, Sriphana U, Thongsri Y, Promsuwan P, Prariychatigul C, Yenjai C. Coumarinoid from the fruits of Micromelum facatum. Fitoterapia. 2014;94:134–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Valente JSS, Fonseca AOS, Denardi LB, Dal Ben VS, Maia Filho FS, Baptista CT, Braga CQ, Zambrano CG, Alves SH, Botton SA, Pereira DIB. In vitro susceptibility of Pythium insidiosum to Melaleuca alternifolia, Mentha piperita and Origanum vulgare essential oils combinations. Mycopathologia. 2016;18:1–6.Google Scholar
  9. 9.
    Sagave L, Gressler LT, Flores FC, Silva CB, Vargas APC, Lovato M, Sangioni LA, Pötter L, Botton SA. Atividade de nanoformulações de Melaleuca alternifolia e terpinen-4-ol em isolados de Rhodococcus equi. Arq Bras Med Vet Zootec. 2015;67:221–6.CrossRefGoogle Scholar
  10. 10.
    Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46:1914–20.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Flores FC, Lima JA, Ribeiro RF, Alves SH, Rolim CMB, Beck RCR, Silva CB. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia. 2013;175:281–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Baldissera MD, Silva AS, Oliveira CBA, Santos RCV, Rodrigo A, Vaucher RA, Raffin RP, Gomes P, Dambros MGC, Miletti LC, Boligon AA, Athayde ML, Monteiro SG. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp Parasitol. 2014;141:21–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imanishi J. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro. Microbiol Immunol. 2003;47:681–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Pearce AL, Finlay-Jones JJ, Hart PH. Reduction of nickel-induced contact hypersensitivity reactions by topical tea tree oil in humans. Inflamm Res. 2005;54:22–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Schaffazick SR, Guterres SS. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quím Nova. 2003;26:726–37.CrossRefGoogle Scholar
  16. 16.
    Flores FC, Ribeiro RF, Ourique AF, Rolim CMB, Silva CB, Pohlmann AR, Beck RCR, Guterres SS. Nanostructured systems containing an essential oil: protection against volatilization. Quím Nova. 2011;34:968–72.CrossRefGoogle Scholar
  17. 17.
    Souza ME, Lopes LQS, Vaucher RA, Mário DN, Alves SH, Agertt VA, Bianchini BV, Felicidade SI, Campus MMA, Boligon AA, Athayde ML, Santos CG, Raffin RP, Gomes P, Santos RCV. Antimycobacterial and antifungal activities of Melaleuca alternifolia oil nanoparticles. J Drug Del Sci Technol. 2014;24:559–60.CrossRefGoogle Scholar
  18. 18.
    Azevedo MI, Pereira DIB, Botton AS, Costa MM, Mahl CD, Alves SH, Santurio JM. Pythium insidiosum: morphological and molecular identification of Brazilian isolates. Pesqui Vet Bras. 2012;32:619–22.CrossRefGoogle Scholar
  19. 19.
    Bouchemal K, Briançon S, Perrier E, Fessi H. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. Int J Pharm. 2004;280:241–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Fonseca AOS, Pereira DIB, Maia Filho FS, Osório LG, Maroneze BP, Valente JSS, Pötter L, Meireles MCA. In vitro susceptibility of zoospores and hyphae of Pythium insidiosum to antifungals. J Antimicrob Chemother. 2014;69:1564–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Rex JH, Alexander BD, Andes D, Arthington-Skaggs B, Brown SD, Chaturveli V, Espingel-Ingroff A, Ghannoum MA, Knapp CC, Motyl MR, Ostrosky-Zeichner L, Pfaller M, Sheehan DJ, Walsh TJ. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: approved standard, 2nd ed. Wayne: M38-A2 CLSI. 2008;28:1–35.Google Scholar
  22. 22.
    Cleff MB, Meinerz AR, Faria RO, Xavier MO, Santin R, Nascente PS, Rodrigues MR, Meireles MCA. Atividade inibitória do óleo essencial de orégano em fungos de importância médica e veterinária. Arq Bras Med Vet Zootec. 2010;62:1291–4.CrossRefGoogle Scholar
  23. 23.
    Hammer KA, Carson CF, Riley TV. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J Antimicrob Chemother. 2002;50:195–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Brophy JJ, Davies NW, Southwell IA, Stiff IA, Williams LR. Gaschromatographic quality control for oil of Melaleuca terpinen-4-ol type (Australian tea tree). J Agric and Food Chem. 1989;37:1330–5.CrossRefGoogle Scholar
  25. 25.
    Bakkali F, Averbeck D, Averbeck S, Idaomar M. Biological effects of essential oils a review. Food Chem Toxicol. 2008;46:446–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Barrat GM. Therapeutic application of colloidal drug carriers. Pharm Sci Technol Today. 2000;3:163–71.CrossRefGoogle Scholar
  27. 27.
    Lee SO, Choi GJC, Jang KS, Lim HK, Cho KY, Kim JC. Antifungal activity of five plant essential oils as fumigant against postharvest and soilborne plant pathogenic fungi. Plant Pathol. 2007;23:97–102.CrossRefGoogle Scholar
  28. 28.
    Soylu EM, Soylu S, Kurt S. Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora insfestans. Mycopathologia. 2006;161:119–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Wogiatzi E, Gougoulias N, Papachatzis A, Vagelas I, Chouliaras N. Chemical composition and antimicrobial effects of greek Origanum species essential oil. Biotechnol Biotechnol Equip. 2009;23:1322–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Júlia de Souza Silveira Valente
    • 1
  • Anelise de Oliveira da Silva Fonseca
    • 1
  • Carolina Litchina Brasil
    • 1
  • Lauren Sagave
    • 2
  • Fernanda Cramer Flores
    • 3
  • Cristiane de Bona da  Silva
    • 3
  • Luís Antônio Sangioni
    • 2
  • Luciana Pötter
    • 2
  • Janio Morais Santurio
    • 3
  • Sônia de Avila Botton
    • 2
  • Daniela Isabel Brayer Pereira
    • 1
  1. 1.Laboratório de Micologia, Departamento de Microbiologia e Parasitologia, Prédio 18, Sala 14Universidade Federal de PelotasPelotasBrazil
  2. 2.Centro de Ciências RuraisUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Centro de Ciências da SaúdeUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations