, Volume 182, Issue 1–2, pp 67–76 | Cite as

Genetic Predictors of Susceptibility to Dermatophytoses

  • Susan M. Abdel-Rahman


Countless observational studies conducted over the last century reveal that dermatophytes infect humans of every age, race, gender, and socioeconomic status with strikingly high rates. The curious disparity in dermatophyte infection patterns observed within and between populations has led countless investigators to explore whether genetics underlie a susceptibility to, or confer protection against, dermatophyte infections. This paper examines the data that offer a link between genetics and dermatophytoses and discusses the underlying mechanisms that support these observations.


Tinea capitis Tinea pedis Onychomycosis Candidiasis Cutaneous fungal infection 


  1. 1.
    Gould WL. Ringworm of the feet. JAMA. 1931;96:1300.CrossRefGoogle Scholar
  2. 2.
    Barlow JE, Chaattaway FW. The parasitism of the ringworm group of fungi. AMA Arch Dermatol. 1958;77:399–405.CrossRefGoogle Scholar
  3. 3.
    Kamalam A, Thambiah AS. Trichophyton violaceum infection in an Indian school. Int J Dermatol. 1976;15:136–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Chandrasekaran N, Kamalam A, Thambiah AS. Tinea capitis in an Anglo-Indian school. Trop Geogr Med. 1981;33:253–5.PubMedGoogle Scholar
  5. 5.
    Omar AA. Ringworm of the scalp in primary-school children in Alexandria: infection and carriage. East Mediterr Health J. 2000;6:961–7.PubMedGoogle Scholar
  6. 6.
    Woldeamanuel Y, Mengistu Y, Chryssanthou E, et al. Dermatophytosis in Tulugudu Island, Ethiopia. Med Mycol. 2005;43:79–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Woldeamanuel Y, Leekassa R, Chryssanthou E, et al. Prevalence of tinea capitis in Ethiopian schoolchildren. Mycoses. 2005;48:137–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89:529–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Aljabre SH, Richardson MD, Scott EM, et al. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol. 1992;30:145–52.PubMedCrossRefGoogle Scholar
  10. 10.
    Aljabre SH, Richardson MD, Scott EM, et al. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18:231–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Rashid A, Scott E, Richardson MD. Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol. 1995;133:932–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Esquenazi D, Alviano CS, de Souza W, et al. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol. 2004;155:144–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Duek L, Kaufman G, Ulman Y, et al. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48:175–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166:267–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Tsuboi R, Ogawa H, Bramono K, et al. Pathogenesis of superficial mycoses. J Med Vet Mycol. 1994;32(Suppl 1):91–104.PubMedCrossRefGoogle Scholar
  16. 16.
    Cornbleet T. Cultures from the skin of apparently normal feet. Arch Dermatol Syphilol. 1926;13:670–1.CrossRefGoogle Scholar
  17. 17.
    Ive FA. The carrier stage of tinea capitis in Nigeria. Br J Dermatol. 1966;78:219–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Neil G, Hanslo D, Buccimazza S, et al. Control of the carrier state of scalp dermatophytoses. Pediatr Infect Dis J. 1990;9:57–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Williams JV, Honig PJ, McGinley KJ, et al. Semiquantitative study of tinea capitis and the asymptomatic carrier state in inner city school children. Pediatrics. 1995;96:265–7.PubMedGoogle Scholar
  20. 20.
    Strickler A, Friedman R. Symptomatic and asymptomatic ringworm of the feet. Arch Dermatol Syphilol. 1931;24:430.CrossRefGoogle Scholar
  21. 21.
    Abdel-Rahman SM, Simon S, Wright KJ, et al. Tracking Trichophyton tonsurans through a large urban childcare center: defining infection prevalence and transmission patterns by molecular stain typing. Pediatrics. 2006;118:2365–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Mitchell JH. Further studies on ringworm of the hands and feet. Arch Dermatol Syphilol. 1933;5:174–97.CrossRefGoogle Scholar
  23. 23.
    Honig PJ, Smith LR. Tinea capitis masquerading as atopic or seborrheic dermatitis. J Pediatr. 1979;94:604–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Rippon JW, Varadi DP. The elastases of pathogenic fungi and actinomycetes. J Invest Dermatol. 1968;50:54–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Page WJ, Stock JJ. Phosphate-mediated alteration of the Microsporum gypseum germination protease specificity for substrate: enhanced keratinase activity. J Bacteriol. 1974;117:422–31.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Meevootisom V, Niederpruem DJ. Control of exocellular proteases in dermatophytes and especially Trichophyton rubrum. Sabouraudia. 1979;17:91–106.PubMedCrossRefGoogle Scholar
  27. 27.
    Siesenop U, Bohm KH. Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses. 1995;38:205–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Muhsin TM, Aubaid AH, Al-Duboon AH. Extracellular enzyme activities of dermatophytes and yeast on solid media. Mycoses. 1997;40:465–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Abdel-Rahman SM. Polymorphic exocellular protease expression in clinical isolates of Trichophyton tonsurans. Mycopathologia. 2001;150:117–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Abdel-Rahman SM, Sugita T, Gonzalez-Gonzalez G, et al. Divergence among an international population of Trichophyton tonsurans isolates. Mycopathologia. 2010;169:1–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Abdel-Rahman SM, Farrand N, Schuenemann E, et al. Prevalence of infections with Trichophyton tonsurans in school children (the CAPITIS Study). Pediatrics. 2010;125:966–73.PubMedCrossRefGoogle Scholar
  32. 32.
    Hodges RS. Ringworm of the nails: a preliminary report of sixteen cases of onychomycosis with a cultural study of twelve of these cases due to Trichophytons. Arch Dermatol Syphilol. 1921;4:1–26.CrossRefGoogle Scholar
  33. 33.
    Lewis GM, Spoor H. Trichophyton purpureum infection (generalized). Arch Dermatol Syphilol. 1953;68:354–5.Google Scholar
  34. 34.
    English MD. Trichophyton rubrum infection in families. Br Med J. 1957;1:744–6.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Many H, Derbes VJ, Friedman L. Trichophyton rubrum: exposure and infection within household groups. Arch Dermatol. 1960;82:6–9.CrossRefGoogle Scholar
  36. 36.
    Lewis SM, Lewis BG. Nosocomial transmission of Trichophyton tonsurans tinea corporis in a rehabilitation hospital. Infect Control Hosp Epidemiol. 1997;18:322–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Poisson DM, Rousseau D, Defo D, et al. Outbreak of tinea corporis gladiatorum, a fungal skin infection due to Trichophyton tonsurans, in a French high level judo team. Euro Surveill. 2005;10:187–90.PubMedGoogle Scholar
  38. 38.
    Viguié-Vallanet C, Serre M, Masliah L, et al. Épidémie de teignes à Trichophyton tonsurans dans une école maternelle de la région parisienne. Ann Dermatol Venereol. 2005;132:432–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Ergin S, Ergin C, Erdogan BS, et al. An experience from an outbreak of tinea capitis gladiatorum due to Trichophyton tonsurans. Clin Exp Dermatol. 2006;31:212–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Shiraki Y, Hiruma M, Hirose N, et al. A nationwide survey of Trichophyton tonsurans infection among combat sport club members in Japan using a questionnaire form and the hairbrush method. J Am Acad Dermatol. 2006;54:622–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Shroba J, Olson-Burgess C, Preuett B, et al. Molecular strain typing identifies a large outbreak of Trichophyton tonsurans among healthcare workers in a pediatric hospital. Am J Infect Control. 2009;37:43–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Ilkit M, Saracli MA, Kurdak H, et al. Clonal outbreak of Trichophyton tonsurans tinea capitis gladiatorum among wrestlers in Adana, Turkey. Med Mycol. 2010;48:480–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Hecht R, Sulzberger MB, Baer RL, Hecht R. Common fungous infections of the feet and groins: negligible role of exposure causing attacks. Arch Dermatol Syphilol. 1942;45:670–5.CrossRefGoogle Scholar
  44. 44.
    Zaias N, Tosti A, Rebell G, et al. Autosomal dominant pattern of distal subungual onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 1996;34:302–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Bonifaz A, Araiza J, Koffman-Alfaro S, et al. Tinea imbricata: autosomal dominant pattern of susceptibility in a polygamous indigenous family of the Nahuatl zone in Mexico. Mycoses. 2004;47:288–91.PubMedCrossRefGoogle Scholar
  46. 46.
    Serjeantson S, Lawrence G. Autosomal recessive inheritance of susceptibility to tinea imbricata. Lancet. 1977;1:13–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Ravine D, Turner KJ, Alpers MP. Genetic inheritance of susceptibility to tinea imbricata. J Med Genet. 1980;17:342–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hay RJ, Reid S, Talwat E, et al. Endemic tinea imbricata—a study on Goodenough Island, Papua New Guinea. Trans R Soc Trop Med Hyg. 1984;78:246–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Svejgaard E, Jakobsen B, Svejgaard A. HLA studies in chronic dermatophytosis caused by Trichophyton rubrum. Acta Dermatol Venereol. 1983;63:254–5.Google Scholar
  50. 50.
    Ahmed AR, Schreiber P, Aiello J, et al. A preliminary report on the role of some immunologic factors in persistence of chronic tinea pedis. Clin Exp Dermatol. 1985;10:45–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Zaitz C, Campbell I, Moraes JR, et al. HLA—associated susceptibility to chronic onychomycosis in Brazilian Ashkenazic Jews. Int J Dermatol. 1996;35:681–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Sadahiro A, Moraes JRF, Moraes MEH, et al. HLA in Brazilian Ashkenazic Jews with chronic dermatophytosis caused by Trichophyton rubrum. Braz J Microbiol. 2004;35:69–73.CrossRefGoogle Scholar
  53. 53.
    Asz-Sigall D, López-García L, Vega-Memije ME, et al. HLA-DR6 association confers increased resistance to T. rubrum onychomycosis in Mexican Mestizos. Int J Dermatol. 2010;49:1406–9.PubMedCrossRefGoogle Scholar
  54. 54.
    García-Romero MT, Granados J, Vega-Memije ME, et al. Analysis of genetic polymorphism of the HLA-B and HLA-DR loci in patients with dermatophytic onychomycosis and in their first-degree relatives. Actas Dermosifiliogr. 2012;103:59–62.CrossRefGoogle Scholar
  55. 55.
    Jones HE, Reinhardt JH, Rinaldi MG. Immunologic susceptibility to chronic dermatophytosis. Arch Dermatol. 1974;110:213–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Rajka G, Barlinn C. On the significance of the trichophytin reactivity in atopic dermatitis. Acta Dermatol Venereol. 1979;59:45–7.Google Scholar
  57. 57.
    Hay RJ, Shennan G. Chronic dermatophyte infections II. Antibody and cell-mediated immune responses. Br J Dermatol. 1982;106:191–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Abdel-Rahman SM, Preuett BL. Genetic predictors of susceptibility to cutaneous fungal infections: a pilot genome wide association study to refine the candidate gene search. J Dermatol Sci. 2012;67:147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Harsha A, Stojadinovic O, Brem H, et al. ADAM12: a potential target for the treatment of chronic wounds. J Mol Med. 2008;86:961–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Seifert O, Bayat A, Geffers R, et al. Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen. 2008;16:254–65.PubMedCrossRefGoogle Scholar
  62. 62.
    Furumoto H, Nakamura K, Imamura T, et al. Association of apolipoprotein allele epsilon 2 with psoriasis vulgaris in Japanese population. Arch Dermatol Res. 1997;289:497–500.PubMedCrossRefGoogle Scholar
  63. 63.
    Schenkel AR, Dufour EM, Chew TW, et al. The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell Commun Adhes. 2007;14:227–37.PubMedCrossRefGoogle Scholar
  64. 64.
    Bixel MG, Li H, Petri B, Khandoga AG, et al. CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood. 2010;116:1172–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Kraus DM, Elliott GS, Chute H, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176:4419–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Sun LD, Cheng H, Wang ZX, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42:1005–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal. 2009;3:337–47.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Auer-Grumbach M, Weger M, Fink-Puches R, et al. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. Brain. 2011;134:1839–52.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Langton AK, Sherratt MJ, Griffiths CE, et al. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology. 2012;13:37–48.PubMedCrossRefGoogle Scholar
  70. 70.
    Olivieri J, Smaldone S, Ramirez F. Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis. Fibrogenesis Tissue Repair. 2010;3:24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Brinckmann J, Hunzelmann N, Kahle B, et al. Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab Invest. 2010;90:739–52.PubMedCrossRefGoogle Scholar
  72. 72.
    Samuel CS, Sakai LY, Amento EP. Relaxin regulates fibrillin 2, but not fibrillin 1, mRNA and protein expression by human dermal fibroblasts and murine fetal skin. Arch Biochem Biophys. 2003;411:47–55.PubMedCrossRefGoogle Scholar
  73. 73.
    Schlosser A, Thomsen T, Moeller JB, et al. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. J Immunol. 2009;183:3800–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Thomsen T, Moeller JB, Schlosser A, et al. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition. J Biol Chem. 2010;285:1229–38.PubMedCrossRefGoogle Scholar
  75. 75.
    Xie ZH, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates Fc epsilon RI-mediated signal transduction in mast cells. J Immunol. 2002;168:4682–91.PubMedCrossRefGoogle Scholar
  76. 76.
    Nishida K, Yamasaki S, Hasegawa A, et al. Gab2, via PI-3 K, regulates ARF1 in FcεRI-mediated granule translocation and mast cell degranulation. J Immunol. 2011;187:932–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Schmidhuber SM, Santic R, Tam CW, et al. Galanin-like peptides exert potent vasoactive functions in vivo. J Invest Dermatol. 2007;127:716–21.PubMedCrossRefGoogle Scholar
  78. 78.
    Kofler B, Berger A, Santic R, et al. Expression of neuropeptide galanin and galanin receptors in human skin. J Invest Dermatol. 2004;122:1050–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 2007;115:177–207.PubMedCrossRefGoogle Scholar
  80. 80.
    Lewis DA, Travers JB, Somani AK, et al. The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene. 2010;29:1475–85.PubMedCrossRefGoogle Scholar
  81. 81.
    Isard O, Knol AC, Ariès MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131:59–66.PubMedCrossRefGoogle Scholar
  82. 82.
    Miura M, Sasaki M, Mizukoshi K, et al. Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. Pain. 2011;152:888–95.PubMedCrossRefGoogle Scholar
  83. 83.
    Tengara S, Tominaga M, Kamo A, et al. Keratinocyte-derived anosmin-1, an extracellular glycoprotein encoded by the X-linked Kallmann syndrome gene, is involved in modulation of epidermal nerve density in atopic dermatitis. J Dermatol Sci. 2010;58:64–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Wingate KV, Torres SM, Silverstein KAT, et al. Expression of endogenous antimicrobial peptides in normal canine skin. Vet Dermatol. 2009;20:19–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Hicks AA, Pramstaller PP, Johansson A et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009;5(10):e1000672.Google Scholar
  86. 86.
    Jarrold BB, Bimder RL, Robinson MK, et al. Expression profiles of stratum corneum lipid metabolism pathways associated with intrinsic and extrinsic aging (Abstract P824). J Am Acad Dermatol. 2009;60:AB28.CrossRefGoogle Scholar
  87. 87.
    Jarrold BB, Bimder RL, Robinson MK, et al. Hexamidine, a protease inhibitor, promotes stratum corneum lipid biomarkers in vitro (Abstract). J Am Acad Dermatol. 2010;62:AB1.Google Scholar
  88. 88.
    Bibel DJ, Aly R, Shah S, et al. Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol. 1993;73:407–11.PubMedGoogle Scholar
  89. 89.
    Ogawa E, Okuyama R, Egawa T, et al. p63/p51-induced onset of keratinocyte differentiation via the c-Jun N-terminal kinase pathway is counteracted by keratinocyte growth factor. J Biol Chem. 2008;283:34241–9.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Plasari G, Calabrese A, Dusserre Y, et al. Nuclear factor I-C links platelet-derived growth factor and transforming growth factor β1 signaling to skin wound healing progression. Mol Cell Biol. 2009;29:6006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Clemmensen A, Andersen KE, Clemmensen O, et al. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid. J Invest Dermatol. 2010;130:2201–10.PubMedCrossRefGoogle Scholar
  92. 92.
    McFarland KL, Glaser K, Hahn JM, et al. Culture medium and cell density impact gene expression in normal skin and abnormal scar-derived fibroblasts. J Burn Care Res. 2011;32:498–508.PubMedCrossRefGoogle Scholar
  93. 93.
    Russell SB, Russell JD, Trupin KM, et al. Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol. 2010;130:2489–96.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Banno T, Adachi M, Mukkamala L, et al. Unique keratinocyte-specific effects of interferon-γ that protect skin from viruses, identified using transcriptional profiling. Antivir Ther. 2003;8:541–54.PubMedGoogle Scholar
  95. 95.
    Taylor JM, Street TL, Hao L, et al. Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes. PLoS One. 2009;2009:e7651.CrossRefGoogle Scholar
  96. 96.
    Geutskens SB, Hordijk PL, van Hennik PB. The chemorepellent Slit3 promotes monocyte migration. J Immunol. 2010;185:7691–8.PubMedCrossRefGoogle Scholar
  97. 97.
    Wu JY, Feng L, Park HT, et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature. 2001;410:948–52.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Denk AE, Braig S, Schubert T, et al. Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells. Int J Mol Med. 2011;28:721–6.PubMedGoogle Scholar
  99. 99.
    Gautier G, de Saint-Vis B, Senechal B, et al. The class 6 semaphorin SEMA6A is induced by interferon-gamma and defines an activation status of Langerhans cells observed in pathological situations. Am J Pathol. 2006;168:453–65.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Klostermann A, Lutz B, Gertler F, et al. The orthologous human and murine semaphorin 6A-1 proteins (SEMA6A-1/Sema6A-1) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem. 2000;275:39647–53.PubMedCrossRefGoogle Scholar
  101. 101.
    Birlea SA, Gowan K, Fain PR, et al. Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol. 2010;130:798–803.PubMedCrossRefGoogle Scholar
  102. 102.
    Alkhateeb A, Al-Ddain Marzouka N, Qarqaz F. SMOC2 gene variant and the risk of vitiligo in Jordanian Arabs. Eur J Dermatol. 2010;20:701–4.PubMedGoogle Scholar
  103. 103.
    Liu J, Man WY, Lv CZ, et al. Epidermal permeability barrier recovery is delayed in vitiligo-involved sites. Skin Pharmacol Physiol. 2010;23:193–200.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jiménez-Puya R, Vázquez-Bayo C, Rodriguez-Bujaldón A, et al. Extensive tinea in a patient with severe combined immunodeficiency. Pediatr Dermatol. 2009;26:213–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Kisand K, Bøe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kisand K, Lilic D, Casanova JL, et al. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41:1517–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Pedroza LA, Kumar V, Sanborn KB, et al. Autoimmune regulator (AIRE) contributes to Dectin-1-induced TNF-α production and complexes with caspase recruitment domain-containing protein 9 (CARD9), spleen tyrosine kinase (Syk), and Dectin-1. J Allergy Clin Immunol. 2012;129:464–72.PubMedCrossRefGoogle Scholar
  108. 108.
    Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.PubMedCrossRefGoogle Scholar
  109. 109.
    Chu EY, Freeman AF, Jing H, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol. 2012;148:79–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Al Khatib S, Keles S, Garcia-Lloret M, et al. Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J Allergy Clin Immunol. 2009;124:342–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Nahum A, Bates A, Sharfe N, et al. Association of the lymphoid protein tyrosine phosphatase, R620 W variant, with chronic mucocutaneous candidiasis. J Allergy Clin Immunol. 2008;122:1220–2.PubMedCrossRefGoogle Scholar
  112. 112.
    Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    van de Veerdonk FL, Plantinga TS, Hoischen A, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Smeekens SP, Plantinga TS, van de Veerdonk FL, et al. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS One. 2011;6:e29248.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Nielsen J, Kofod-Olsen E, Spaun E, et al. A STAT1-gain-of-function mutation causing Th17 deficiency with chronic mucocutaneous candidiasis, psoriasiform hyperkeratosis and dermatophytosis. BMJ Case Rep. 2015;. doi: 10.1136/bcr-2015-211372.PubMedCentralGoogle Scholar
  116. 116.
    Mekki N, Ben-Mustapha I, Liu L, et al. IL-17 T cells’ defective differentiation in vitro despite normal range ex vivo in chronic mucocutaneous candidiasis due to STAT1 mutation. J Invest Dermatol. 2014;134:1155–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hsu AP, Sowerwine KJ, Lawrence MG, et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131:1586–93.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Smeekens SP, Huttenhower C, Riza A, et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J Innate Immunol. 2014;6:253–62.Google Scholar
  120. 120.
    Nahum A, Dadi H, Bates A, et al. The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol. 2011;127:528–31.PubMedCrossRefGoogle Scholar
  121. 121.
    Nahum A, Dadi H, Bates A, et al. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. Autoimmun Rev. 2012;11:341–7.PubMedCrossRefGoogle Scholar
  122. 122.
    Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:17600–7.CrossRefGoogle Scholar
  123. 123.
    Saijo S, Fujikado N, Furuta T, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol. 2007;8:39–46.PubMedCrossRefGoogle Scholar
  124. 124.
    Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol. 2012;129:294–305.PubMedCrossRefGoogle Scholar
  128. 128.
    Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tursen U, Kaya TI, Eskandari G, et al. Apolipoprotein E gene polymorphism and serum lipids in patients with superficial fungal disease. Yonsei Med J. 2004;45:375–9.PubMedCrossRefGoogle Scholar
  130. 130.
    Zuccarello D, Salpietro DC, Gangemi S, et al. Familial chronic nail candidiasis with ICAM-1 deficiency: a new form of chronic mucocutaneous candidiasis. J Med Genet. 2002;39:671–5.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kaya TI, Eskandari G, Guvenc U, et al. CD4 + CD25 + Treg cells in patients with toenail onychomycosis. Arch Dermatol Res. 2009;301:725–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Maleszka R, Adamski Z, Dworacki G. Evaluation of lymphocytes subpopulations and natural killer cells in peripheral blood of patients treated for dermatophyte onychomycosis. Mycoses. 2001;44:487–92.PubMedCrossRefGoogle Scholar
  133. 133.
    Jones HE. The atopic-dermatophytosis syndrome. Acta Derm Venereol. 1980;Suppl. 92:81–5.Google Scholar
  134. 134.
    Leibovici V, Evron R, Axelrod O, et al. Imbalance of immune responses in patients with chronic and widespread fungal skin infection. Clin Exp Dermatol. 1995;20:390–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Fuchs E. Keratins and the skin. Annu Rev Cell Dev Biol. 1995;11:123–53.PubMedCrossRefGoogle Scholar
  136. 136.
    Deedrick DW. Hairs, Fibers, Crime, and Evidence. Forensic Sci Commun. 2000;2(3).
  137. 137.
    Franbourg A, Hallegot P, Baltenneck F, et al. Current research on ethnic hair. J Am Acad Dermatol. 2003;48:S115–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Saferstein R. Criminalistics: an introduction to forensic science. 8th ed. Upper Saddle River: Pearson Education Inc.; 2004.Google Scholar
  139. 139.
    Rogers MA, Winter H, Langbein L, et al. The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation. 2004;72:527–40.PubMedCrossRefGoogle Scholar
  140. 140.
    Rogers MA, Edler L, Winter H, et al. Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. J Invest Dermatol. 2005;124:536–44.PubMedCrossRefGoogle Scholar
  141. 141.
    Jablonski NG. The evolution of human skin and skin color. Ann Rev Anthropol. 2004;33:585–623.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.UMKC School of MedicineKansas CityUSA
  2. 2.Section of Therapeutic InnovationChildren’s Mercy HospitalKansas CityUSA
  3. 3.Division of Pediatric Clinical Pharmacology, Toxicology, and Therapeutic InnovationChildren’s Mercy Hospitals and ClinicsKansas CityUSA

Personalised recommendations