, Volume 181, Issue 5–6, pp 329–339 | Cite as

The AAA ATPase Vps4 Plays Important Roles in Candida albicans Hyphal Formation and is Inhibited by DBeQ

  • Yahui Zhang
  • Wanjie Li
  • Mi Chu
  • Hengye Chen
  • Haoyuan Yu
  • Chaoguang Fang
  • Ningze Sun
  • Qiming Wang
  • Tian Luo
  • Kaiju Luo
  • Xueping She
  • Mengqian Zhang
  • Dong Yang


Candida albicans is an opportunistic human pathogen, and its pathogenicity is associated with hyphal formation. Previous studies have shown that at neutral-to-alkaline pH, hyphal growth is dependent on the Rim101 pathway whose activation requires Snf7, a member of the ESCRT system. In this work, we described the purification and characterization of the C. albicans Vps4, an AAA ATPase required for recycling of the ESCRTs. Its role on hyphal growth has been investigated. Our data suggest deletion of Vps4 decreases overall hyphal growth at pH 7 and increases the growth of multiple hyphae induced by serum, which indicates that the ESCRTs may make a Rim101-independent contribution to hyphal growth. Furthermore, DBeQ, an inhibitor of the AAA ATPase p97, was shown to inhibit the ATPase activity of Vps4 with an IC50 of about 11.5 μM. To a less degree, it also inhibits hyphal growth. Our work may provide a new strategy to control C. albicans infection.


ESCRT Vps4 Candida albicans Hyphal Polarity DBeQ 



This work is supported by grants from the Fok Ying Tung Education Foundation (#132025), the National Science Foundation of China (#31070682), the Fundamental Research Funds for the Central Universities, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Program of the Co-Construction with Beijing Municipal Commission of Education of China and the Beijing Natural Science Foundation (#5154029).

Supplementary material

11046_2015_9979_MOESM1_ESM.pdf (437 kb)
Supplementary material 1 (PDF 438 kb)
11046_2015_9979_MOESM2_ESM.tif (5.8 mb)
Supplementary material 2 (TIFF 5918 kb)
11046_2015_9979_MOESM3_ESM.tif (1.2 mb)
Supplementary material 3 (TIFF 1267 kb)
11046_2015_9979_MOESM4_ESM.tif (15.5 mb)
Supplementary material 4 (TIFF 15855 kb)
11046_2015_9979_MOESM5_ESM.docx (29 kb)
Supplementary material 5 (DOCX 28 kb)


  1. 1.
    Viscoli C, Girmenia C, Marinus A, Collette L, Martino P, Vandercam B, Doyen C, Lebeau B, Spence D, Krcmery V, De Pauw B, Meunier F. Candidemia in cancer patients: a prospective, multicenter surveillance study by the invasive fungal infection group (IFIG) of the European organization for research and treatment of cancer (EORTC). Clin Infect Dis. 1999;28:1071–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Beck-Sague CM, Jarvis WR. National nosocomial infections surveillance system. Secular trends in the epidemiology of nosocomial fungal infections in the United States 1980–1990. J Infect Dis. 1993;167:1247–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Kibbler CC, Seaton S, Barnes RA, Gransden WR, Holliman RE, Johnson EM, Perry JD, Sullivan DJ, Wilson JA. Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect. 2003;54:18–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Scherwitz C. Ultrastructure of human cutaneous candidosis. J Invest Dermatol. 1982;78:200–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Sudbery PE, Cow NAR, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12:317–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Dalle F, Wachtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruere C, Bonnin A, Hube B. Cellular interaction of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12:248–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006;2:e129.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu WD, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010;12:273–82.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe. 2008;4:28–39.CrossRefPubMedGoogle Scholar
  10. 10.
    Sudbery PE. Growth of Candida albicans hyphae. Nat Rev Microbiol. 2011;9:737–48.CrossRefPubMedGoogle Scholar
  11. 11.
    Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Mol Biol Rev. 2007;71:348–76.CrossRefGoogle Scholar
  12. 12.
    Xu W, Smith FJ Jr, Subaran R, Mitchell AP. Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans. Mol Biol Cell. 2004;15:5528–37.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Li M, Martin S, Bruno V, Michell A, Davis D. Candida albicans Rim13p, a protease required for Rim101p processing at Acidic and Alkaline pHs. Eukaryot Cell. 2004;3:741–51.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Boysen J, Mitchell A. Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the Saccharomyces cerevisiae Rim101 pathway. Mol Biol Cell. 2005;17:1344–53.CrossRefGoogle Scholar
  15. 15.
    Wolf JM, Johnson DJ, Chmielewski D, Davis D. The Candida albicans ESCRT pathway makes Rim101-dependent and—independent contributions to pathogenesis. Eukaryot Cell. 2010;9:1203–15.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kullas A, Li M, Davis D. Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans. Eukaryot Cell. 2004;3:1609–18.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22:R116–20.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wollert T, Yang D, Ren X, Li HH, Im YJ, Hurley JH. The ESCRT machinery at a glance. J Cell Sci. 2009;122:2163–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hurley JH. The ESCRT complexes. Crit Rev Biochem Mol Biol. 2010;45:463–87.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI. The protein network of HIV budding. Cell. 2003;19:701–13.CrossRefGoogle Scholar
  21. 21.
    Morita E, Sandrin V, Chung HY, Morham S, Gygi S, Rodesch C, Sundquist WI. Human ESCRT and ALIX protein interact with proteins of the midbody and function in cytokinesis. EMBO J. 2007;26:4215–27.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee JA, Liu L, Gao FB. Autophagy defects contribute to neurodegeneration induced by dysfunctional ESCRT-III. Autophagy. 2009;5:1070–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang D, Rismanchi N, Renvoise B, Lippincott-Schwartz J, Blackstone C, Hurley JH. Structural basis for midbody targeting of spastin by the ESCRT-III protein CHMP1B. Nat Struct Mol Biol. 2008;15:1278–86.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gould GW, Lippincott-Schwartz J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat Rev Mol Cell Biol. 2009;10:287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522:231–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M, Perez F. ESCRT machinery is required for plasma membrane repair. Science. 2014;343:1247136.CrossRefPubMedGoogle Scholar
  27. 27.
    Webster BM, Colombi P, Jager J, Lusk CP. Surveillance of nuclear pore complex assembly by ESCRT-III/Vps4. Cell. 2014;159:388–401.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III complex. Nature. 2009;458:172–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by the ESCRT complex. Nature. 2010;464:864–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol. 2010;11:556–66.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Monroe N, Han H, Gonciarz MD, Eckert DM, Karren MA, Whitby FG, Sundquist WI, Hill CP. The oligomeric state of the active Vps4 AAA ATPase. J Biol Chem. 2014;426:510–25.Google Scholar
  32. 32.
    Yang D, Hurley JH. Structural role of the Vps4-Vta1 interface in the ESCRT-III recycling. Structure. 2010;18:976–84.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Babst M, Wendland B, Estepa EJ, Emr SD. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 1998;17:2982–93.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI. Structural and mechanistic studies VPS4 proteins. EMBO J. 2005;24:3658–69.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lee S, Jones J, Hardison S, Kot J, Khalique Z, Bernardo SM, Lazzell A, Monteagudo C, Lopez-Ribot J. Candida albicans Vps4 is required for secretion of aspartyl proteases and in vivo virulence. Mycopathologia. 2009;167:55–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Quan H, Cao Y, Xu Z, Zhao J, Cao P, Qin X, Jiang Y. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother. 2006;50:1096–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zheng H, Jiang Y, Wang Y, Jia X, Yan T, Gao P, Yan L, Jiang L, Ji H, Cao Y. TOP2 gene disruption reduces drug susceptibility by increasing intracellular ergosterol biosynthesis in Candida albicans. J Med Microbiol. 2010;59:797–803.CrossRefPubMedGoogle Scholar
  38. 38.
    Chou TF, Brown SJ, Minond D, Nordin BE, Li K, Jones AC, Chase P, Porubsky PR, Stoltz BM, Schoenen FJ, Patricelli MP, Hodder P, Rosen H, Deshaies RJ. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci USA. 2011;108:4834–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Odorizzi G, Babst M, Emr SD. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell. 1998;95:847–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Gonciarz MD, Whitby FG, Eckert DM, Kieffer C, Heroux A, Sundquist WI, Hill CP. Biochemical and structural studies of yeast vps4 oligomerization. J Mol Biol. 2008;384:878–95.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen H, Yu H, Huang H, Li W, Yang D. Molecular modeling of the Candida albicans Vps4 and a virtual screening study for novel inhibitors. Med Chem Res. 2013;22:4529–36.CrossRefGoogle Scholar
  42. 42.
    Dukes JD, Fish L, Richardson JD, Blaikley E, Burns S, Caunt CJ, Chalmers AD, Whitley P. Functional ESCRT machinery is required for constitutive recycling of claudin-1 and maintenance of polarity in vertebrate epithelial cells. Mol Biol Cell. 2011;22:3192–205.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Cornet M, Gaillardin C, Richard ML. Deletions of the endocytic components VPS28 and VPS32 in Candida albicans lead to echinocandin and azole hypersensitivity. Antimicrob Agents Chemother. 2006;50:3492–5.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, Monk BC. Candida albicans drug resistance—another way to cope with stress. Microbiology. 2007;153:3211–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Enloe B, Diamond A, Mitchell AP. A single-transformation gene function test in diploid Candida albicans. J Bacteriol. 2000;182:5730–36.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yahui Zhang
    • 1
  • Wanjie Li
    • 2
  • Mi Chu
    • 1
  • Hengye Chen
    • 1
  • Haoyuan Yu
    • 1
  • Chaoguang Fang
    • 1
  • Ningze Sun
    • 1
  • Qiming Wang
    • 1
  • Tian Luo
    • 1
  • Kaiju Luo
    • 1
  • Xueping She
    • 1
  • Mengqian Zhang
    • 1
  • Dong Yang
    • 1
  1. 1.Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations