, Volume 180, Issue 3–4, pp 193–201 | Cite as

Molecular and Histological Association Between Candida albicans from Oral Soft Tissue and Carious Dentine of HIV-Positive Children



Candida albicans and caries are frequently investigated among healthy and immunosuppressed individuals. The objective of this study was to demonstrate the presence of C. albicans on both oral soft and hard tissue and to investigate, at molecular level, the genetic subtype of the organism from the two oral sites. Tongue swabs and dentine scrapings from 362 HIV-positive children, referred for the extraction of carious primary teeth, were cultured on CHROMagar and identified to species level with ID32C. Histological staining of extracted carious teeth was also done. In patients with positive C. albicans cultures from both the tongue and carious dentine, DNA fingerprinting of such paired isolates was performed, using Southern blot hybridisation with the Ca3 probe. Yeasts were cultured from the tongue of 151 (41.7 %) individuals and 57 (37.7 %) simultaneously yielded positive C. albicans cultures from carious dentine. Nine different yeast spp. were identified from the tongue using the ID32C commercial system, but C. albicans was the only species recovered from carious dentine and histological investigation demonstrated fungal elements penetrated into the dentine and not limited to superficial debris on the floor of the cavity. Twelve of 13 paired isolates of C. albicans revealed identical fingerprinting patterns. The findings from this study demonstrated that in a particular individual, the same genetic subtype of C. albicans was capable of colonising both oral soft tissue and carious dentine. This renders carious teeth a constant source, or reservoir, of potentially infectious agents and, particularly among immunosuppressed individuals, should therefore not be left unattended.


C. albicans DNA fingerprinting Carious teeth Paediatric HIV patients Children Caries Fungal colonisation Carious dentine 



The following contributions are gratefully acknowledged: Laboratory assistance from M. van Heerden, J. Molepo and E. Sekati; clinical assistance from I. Mmutlana; an MRC grant to EB.


  1. 1.
    Jacob LS, Flaitz CM, Nichols CM, Hicks MJ. Role of dentinal carious lesions in the pathogenesis of oral candidiasis in HIV infection. J Am Dent Assoc. 1998;129(2):187–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Maijala M, Rautemaa R, Jarvensivu A, Richardson M, Salo T, Tjaderhane L. Candida albicans does not invade carious human dentine. Oral Dis. 2007;13(3):279–84. doi: 10.1111/j.1601-0825.2006.01279.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Cerqueira DF, Portela MB, Pomarico L, Soares RM, de Souza IP, Castro GF. Examining dentinal carious lesions as a predisposing factor for the oral prevalence of Candida spp. in HIV-infected children. J Dent Child. 2007;74(2):98–103.Google Scholar
  4. 4.
    Charone S, Portela MB, das Chagas MS, de Araujo Soares RM, de Araujo Castro GF. Biofilm of Candida albicans from oral cavity of an HIV-infected child: challenge on enamel microhardness. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(4):500–4. doi: 10.1016/j.oooo.2012.11.003.CrossRefPubMedGoogle Scholar
  5. 5.
    Portela MB, das Chagas MS, Cerqueira DF, de Souza IP, Souto-Padron T, de Araujo Soares RM, et al. Differential collagenolytic activity of Candida albicans isolated from oral mucosa and dentinal carious lesions of HIV-infected children. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):378–83. doi: 10.1016/j.oooo.2011.09.006.CrossRefPubMedGoogle Scholar
  6. 6.
    Akdeniz BG, Koparal E, Sen BH, Ates M, Denizci AA. Prevalence of Candida albicans in oral cavities and root canals of children. ASDC J Dent Child. 2002;69(3):289–92.PubMedGoogle Scholar
  7. 7.
    Pongsiriwet S, Lamaroon A, Kanjanavanit S, Pattanaporn K, Krisanaprakornkit S. Oral lesions and dental caries status in perinatally HIV-infected children in Northern Thailand. Int J Paediatr Dent. 2003;13(3):180–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Domaneschi C, Massarente DB, de Freitas RS, de Sousa Marques HH, Paula CR, Migliari DA, et al. Oral colonization by Candida species in AIDS pediatric patients. Oral Dis. 2011;17(4):393–8. doi: 10.1111/j.1601-0825.2010.01765.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Ramos-Gomez FJ, Folayan MO. Oral health considerations in HIV-infected children. Curr HIV/AIDS Rep. 2013;10(3):283–93. doi: 10.1007/s11904-013-0163-y.CrossRefPubMedGoogle Scholar
  10. 10.
    Soll DR. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Trop. 2002;81(2):101–10.CrossRefPubMedGoogle Scholar
  11. 11.
    Soll DR. The evolution of alternative biofilms in an opportunistic fungal pathogen: an explanation for how new signal transduction pathways may evolve. Infect Genet Evol. 2014;22:235–43. doi: 10.1016/j.meegid.2013.07.013.CrossRefPubMedGoogle Scholar
  12. 12.
    Krom BP, Kidwai S, Ten Cate JM. Candida and other fungal species: forgotten players of healthy oral microbiota. J Dent Res. 2014;93(5):445–51. doi: 10.1177/0022034514521814.CrossRefPubMedGoogle Scholar
  13. 13.
    Kreger-van Rij NJW. The yeasts a taxonomic study. Amsterdam: Elsevier Science Publishers B.V.; 1984. p. 1984.Google Scholar
  14. 14.
    Barnett JA, Payne RW, Yarrow D. Yeasts: characterisation and identification. 2nd ed. Cambridge: Cambridge University Press; 1990.Google Scholar
  15. 15.
    Meletiadis J, Arabatzis M, Bompola M, Tsiveriotis K, Hini S, Petinaki E, et al. Comparative evaluation of three commercial identification systems using common and rare bloodstream yeast isolates. J Clin Microbiol. 2011;49(7):2722–7. doi: 10.1128/JCM.01253-10.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Soll DR, Pujol C. Candida albicans clades. FEMS Immunol Med Microbiol. 2003;39(1):1–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Odds FC, Bougnoux ME, Shaw DJ, Bain JM, Davidson AD, Diogo D, et al. Molecular phylogenetics of Candida albicans. Eukaryot Cell. 2007;6(6):1041–52. doi: 10.1128/EC.00041-07.PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Bougnoux ME, Tavanti A, Bouchier C, Gow NA, Magnier A, Davidson AD, et al. Collaborative consensus for optimized multilocus sequence typing of Candida albicans. J Clin Microbiol. 2003;41(11):5265–6.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Tavanti A, Davidson AD, Fordyce MJ, Gow NA, Maiden MC, Odds FC. Population structure and properties of Candida albicans, as determined by multilocus sequence typing. J Clin Microbiol. 2005;43(11):5601–13.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Blignaut E, Molepo J, Pujol C, Soll DR, Pfaller MA. Clade-related amphotericin B resistance among South African Candida albicans isolates. Diagn Microbiol Infect Dis. 2005;53(1):29–31.CrossRefPubMedGoogle Scholar
  21. 21.
    Dodgson AR, Dodgson KJ, Pujol C, Pfaller MA, Soll DR. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother. 2004;48(6):2223–7. doi: 10.1128/AAC.48.6.2223-2227.2004.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Soll D. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev. 2000;13:332–70.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    UNAIDS. Countries UNAIDS. 2013. Acessed 14/9/2014.
  24. 24.
    Shisana O, Rehle T, Simbayi LC, Zuma K, Jooste S, Zungu N, et al. South African national HIV prevalence, incidence and behaviour survey, 2012. Cape Town: HSRC Press; 2012.Google Scholar
  25. 25.
    Blignaut E. Oral health needs of HIV/AIDS orphans in Gauteng, South Africa. AIDS Care. 2007;19(4):532–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Naidoo S, Chikte U. Oro-facial manifestations in paediatric HIV: a comparative study of institutionalized and hospital outpatients. Oral Dis. 2004;10(1):13–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Beighton D, Ludford R, Clark DT, Brailsford SR, Pankhurst CL, Tinsley GF, et al. Use of CHROMagar Candida medium for isolation of yeasts from dental samples. J Clin Microbiol. 1995;33(11):3025–7.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Anson JJ, Allen KD. Evaluation of CHROMagar Candida medium for the isolation and direct identification of yeast species from the female genital tract. Br J Biomed Sci. 1997;54(4):237–9.PubMedGoogle Scholar
  29. 29.
    Buchaille L, Freydiere AM, Guinet R, Gille Y. Evaluation of six commercial systems for identification of medically important yeasts. Eur J Clin Microbiol Infect Dis. 1998;17(7):479–88.CrossRefPubMedGoogle Scholar
  30. 30.
    Scherer S, Stevens D. Application of DNA fingerprinting methods to epidemiology and taxonomy of Candida species. J Clin Microbiol. 1987;25:675–9.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Anderson J, Srikantha T, Morrow B, Miyasaki SH, White TC, Agabian N, et al. Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of Candida albicans. J Clin Microbiol. 1993;31(6):1472–80.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Blignaut E, Pujol C, Lockhart S, Joly S, Soll DR. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J Clin Microbiol. 2002;40(3):826–36.PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Health NDO. The South African antiretroviral treatment guidelines 2013.Google Scholar
  34. 34.
    van Wyk PJ, van Wyk C. Oral health in South Africa. Int Dent J. 2004;54(6):373–7.PubMedGoogle Scholar
  35. 35.
    Wanjau J, du Plessis JB. Prevalence of early childhood caries in 3- to 5-year-old children in Philadelphia district, Mpumalanga Province. SADJ J S Afr Dent Assoc 2006;61(9):390–2.Google Scholar
  36. 36.
    Soll DR. The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. J. Oral Microbiol. 2014;6. doi: 10.3402/jom.v6.22993.
  37. 37.
    Soll DR. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev. 2000;13(2):332–70.PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    L’Ollivier C, Labruere C, Jebrane A, Bougnoux ME, d’Enfert C, Bonnin A, et al. Using a multi-locus microsatellite typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. Infect Genet Evol. 2012;12(8):1949–57. doi: 10.1016/j.meegid.2012.07.025.CrossRefPubMedGoogle Scholar
  39. 39.
    Hossain H, Ansari F, Schulz-Weidner N, Wetzel WE, Chakraborty T, Domann E. Clonal identity of Candida albicans in the oral cavity and the gastrointestinal tract of pre-school children. Oral Microbiol Immunol. 2003;18(5):302–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Simon-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013;47(6):591–600. doi: 10.1159/000351663.CrossRefPubMedGoogle Scholar
  41. 41.
    Naglik J, Newport G, White T, Fernandes-Naglik L, Greenspan J, Greenspan D, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun. 1999;67:2482–90.PubMedCentralPubMedGoogle Scholar
  42. 42.
    Starr JR, White TC, Leroux BG, Luis HS, Bernardo M, Leitao J, et al. Persistence of oral Candida albicans carriage in healthy Portuguese schoolchildren followed for 3 years. Oral Microbiol Immunol. 2002;17(5):304–10.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Oral Pathology and Oral Biology, Faculty of Health Sciences, School of DentistryUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations