Advertisement

Mycopathologia

, Volume 180, Issue 3–4, pp 173–179 | Cite as

Usefulness of MALDI-TOF Mass Spectrometry for Routine Identification of Candida Species in a Resource-Poor Setting

  • Doudou Sow
  • Bécaye Fall
  • Magatte Ndiaye
  • Bissoume Sambe Ba
  • Khadime Sylla
  • Roger Tine
  • Aminata Collé Lô
  • Annie Abiola
  • Boubacar Wade
  • Thérèse Dieng
  • Yémou Dieng
  • Jean Louis Ndiaye
  • Christophe Hennequin
  • Oumar Gaye
  • Babacar Faye
Article

Abstract

Background

Identification of fungal clinical isolates is essential for therapeutic management. In resource-limited settings, identification mostly relies on biochemical tests whose sensitivity and specificity are known to be insufficient for identification of closely related or newly described species. MALDI-TOF has been shown in favored countries to be a reliable and powerful tool for microorganism identification, including yeasts. The aim of this study was to compare MALDI-TOF with routine identification procedures in a resource-poor context.

Methods

A total of 734 clinical specimens (502 vaginal swabs, 147 oral swabs, 61 bronchoalveolar lavage fluids and 24 stool samples) have been tested in the mycology unit of Fann Hospital, Dakar, Senegal. Strains isolated from culture were identified by both conventional phenotypic methods (germ tube formation and biochemical panels) and MALDI-TOF Saramis/VITEK MS, bioMérieux, France. In addition to comparing the final identification, we determined the time of obtaining the results and the cost for both approaches.

Results

Overall, 218 (29.7 %) samples were positive for Candida. MALDI-TOF MS enabled the identification of 214 of the 218 strains isolated (98.1 %) at species level. Phenotypic approach yielded identification for 208 strains (95.4 %). Congruence between the tests was observed for 203 isolates. A discrepancy was observed for one isolate identified as Candida krusei with the phenotypic approach and Candida tropicalis with the MALDI-TOF. In addition, ten isolates identified at genus level by phenotypic methods were identified as C. glabrata (n = 8), C. tropicalis (n = 1) and C. parapsilosis (n = 1) by MALDI-TOF. The turnaround time for identification was <1 h using the MALDI-TOF compared to our routine procedures (48 h). The overall cost (reagents + expendables) per isolate was at 1.35€ for the MALDI-TOF MS.

Conclusion

MALDI-TOF clearly outperformed the diagnosis capacities of phenotypic methods by reducing the delay of results and giving accurate identification at species level. Moreover, this approach appears to be cost-effective and should be implemented especially in resource-poor context.

Keywords

MALDI-TOF MS Resource-limited settings Candida species Routine identification procedure 

Notes

Conflict of interest

None.

References

  1. 1.
    Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.CrossRefPubMedGoogle Scholar
  2. 2.
    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.CrossRefPubMedGoogle Scholar
  3. 3.
    U.S. & World Population Clocks; http://www.census.gov/main/www/popclock.html.
  4. 4.
    Morgan J. Global trends in candidemia: review of reports from 1995–2005. Curr Infect Dis Rep. 2005;7:429–39.CrossRefPubMedGoogle Scholar
  5. 5.
    Hays C, Duhamel C, Cattoir V, Bonhomme J. Rapid and accurate identification of species belonging to the Candida parapsilosis complex by real-time PCR and melting curve analysis. J Med Microbiol. 2011;60:477–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Ma C, Li F, Shi L, Hu Y, Wang Y, Huang M, Kong Q. Surveillance study of species distribution, antifungal susceptibility and mortality of nosocomial candidemia in a tertiary care hospital in China. BMC Infect Dis. 2013;13:337.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Shin JH, Ranken R, Sefers SE, Lovari R, Quinn CD, Meng S, Carolan HE, Toleno D, Li H, Lee JN, Stratton CW, Massire C, Tangb YW. Detection, identification, and distribution of fungi in bronchoalveolar lavage specimens by use of multilocus PCR coupled with electrospray ionization/mass spectrometry. J Clin Microbiol. 2013;51:136–41.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J ClinMicrobiol. 2006;44:693–9.Google Scholar
  9. 9.
    Rosenvinge FS, Dzajic E, Knudsen E, Malig S, Andersen LB, Løvig A, Arendrup MC, Jensen TG, Gahrn-Hansen B, Kemp M. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates. Mycoses. 2013;56:229–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol. 2011;49:1614–6.PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Santos C, Lima N, Sampaio P, Pais C. Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species. Diagn Microbiol Infect Dis. 2011;71:304–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Van Herendael BH, Bruynseels P, Bensaid M, et al. Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2012;31:841–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Marklein G, Josten M, Klanke U, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009;47:2912–7.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48:3482–6.PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17:1359–65.CrossRefPubMedGoogle Scholar
  16. 16.
    Romeo O, Criseo G. First molecular method for discrimination between Candida Africana, Candida albicans and Candida dublinensis by using hwp1 gene. Diagn Microbiol Infect Dis. 2008;62:230–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Schelenz S. Management of candidiasis in the intensive care unit. J Antimicrob Chemoth. 2008;61:i31–4.CrossRefGoogle Scholar
  18. 18.
    Esebelahie NO, Enweani IB, Omoregie R. Candida colonisation in asymptomatic HIV patients attending a tertiary hospital in Benin City, Nigeria. Libyan J Med. 2013;8:20322.CrossRefPubMedGoogle Scholar
  19. 19.
    Tchelougou D, Karou DS, Kpotsra A, Balaka A, Assih M, Bamoke M, Katawa G, Anani K, Simpore J, de Souza C. Vaginal infections in pregnant women at the Regional Hospital of Sokode (Togo in 2010 and 2011. Med Sante Trop. 2013;23(1):49–54.PubMedGoogle Scholar
  20. 20.
    Lacroix C, Gicquel A, Sendid B, Meyer J, Accoceberry I, François N, Morio F, Desoubeaux G, Chandenier J, Kauffmann-Lacroix C, Hennequin C, Guitard J, Nassif X, Bougnoux ME. Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of Candida species. Clin Microbiol Infect. 2014;20:153–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Arendrup MC, Sulim S, Holm A, et al. Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol. 2011;49:3300–8.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Arendrup MC, Fuursted K, Gahrn-Hansen B, et al. Seminational surveillance of fungemia in Denmark: notably high rates of fungemia and numbers of isolates with reduced azole susceptibility. J Clin Microbiol. 2005;43:4434–40.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis. 2009;48:503–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Van Herendael BH, Bruynseels P, Bensaid M, et al. Validation of a modified algorithm for the identification of yeast isolates using matrix-assisted laser desorption/ionisation time-of flight mass spectrometry (MALDI-TOF MS). Eur J Clin Microbiol Infect Dis. 2012;31:841–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2011;17:1359–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Borman AM, Szekely A, Linton CJ, Palmer MD, Brown P, Johnson EM. Epidemiology, antifungal susceptibility, and pathogenicity of Candida africana Isolates from the United Kingdom. J ClinMicrobiol. 2013;51(3):967–72.Google Scholar
  27. 27.
    Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost effectiveness. J Clin Microbiol. 2012;50(10):3301.PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Garey KW, Rege M, Pai MP, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43:25–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Morrell M, Fraser VJ, Kollef MH. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005;49:3640–5.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Sow D, Tine RC, Sylla K, Djiba M, Ndour CT, Dieng T, Ndiaye JL, Faye B, Ndiaye D, Gaye O, Dieng Y. Cryptococcal meningitis in Senegal: epidemiology, laboratory findings, therapeutic and outcome of cases diagnosed from 2004 to 2011. Mycopath. 2013;176:443–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Doudou Sow
    • 1
  • Bécaye Fall
    • 2
  • Magatte Ndiaye
    • 1
  • Bissoume Sambe Ba
    • 2
  • Khadime Sylla
    • 1
  • Roger Tine
    • 1
  • Aminata Collé Lô
    • 1
  • Annie Abiola
    • 1
  • Boubacar Wade
    • 2
  • Thérèse Dieng
    • 1
  • Yémou Dieng
    • 1
  • Jean Louis Ndiaye
    • 1
  • Christophe Hennequin
    • 3
  • Oumar Gaye
    • 1
  • Babacar Faye
    • 1
  1. 1.Department of Parasitology, Faculty of MedicineUniversité Cheikh Anta DIOPDakarSenegal
  2. 2.Service de BiologieHôpital Principal de DakarDakarSenegal
  3. 3.Service de ParasitologieHôpital Saint AntoineParisFrance

Personalised recommendations