, Volume 178, Issue 3–4, pp 315–319 | Cite as

In Vitro Antifungal Susceptibility of Malassezia pachydermatis Strains Isolated from Dogs with Chronic and Acute Otitis Externa

  • E. Chiavassa
  • P. Tizzani
  • A. Peano


Malassezia pachydermatis is a yeast that is frequently involved as a secondary/perpetuating factor in canine otitis externa. Topical therapies with different antifungal agents, mainly azole compounds, are generally successful in controlling the yeast overgrowth, but treatment failure and rapid recurrences are common. This study compared the in vitro antifungal susceptibility of M. pachydermatis isolates obtained from chronic and acute cases of otitis externa. The aim was to assess the possible onset of resistance mechanisms in isolates involved in long-lasting episodes with poor response to treatment. We evaluated the in vitro susceptibility to miconazole (MCZ) and clotrimazole (CTZ) of 42 isolates of M. pachydermatis obtained from dogs with chronic (group A, n = 25) and acute otitis (group B, n = 17), using a modified CLSI M27-A3 microdilution method. All isolates were inhibited by the antifungal agents employed, but Malassezia isolates from group A were significantly associated with higher minimum inhibitory concentration (MIC) values for both agents (Median MIC values: MCZ group A 2 µg/ml, group B 1 µg/ml; CTZ group A 8 µg/ml, group B 4 µg/ml). These findings prove that these isolates had a reduced in vitro susceptibility to the antifungal agents tested. However, it is unlikely that this could have any influence on the outcome of a topical treatment. Indeed, marketed products include concentrations of the tested agents that largely exceed even the highest MICs found in this study (in most cases at least 1,000 × the MIC, or greater). In conclusion, this study suggests that isolates of M. pachydermatis involved in chronic cases of canine external otitis and exposed to repeated antifungal treatments are unlikely to develop mechanisms of resistance of clinical relevance.


Malassezia pachydermatis Antifungal susceptibility CLSI reference broth microdilution method Otitis externa 



This work was supported by a grant of Elanco Animal Health, division of Eli Lilly Italy S.p.A. The authors express their acknowledgments to Elena Borio and Roberta Morandi for their laboratory support.

Conflict of interest

None to declare.


  1. 1.
    Miller WH, Griffin CE, Campbell K. Otitis externa. In: Muller and Kirk’s small animal dermatology. Philadelphia: WB Saunders; 2012.Google Scholar
  2. 2.
    Crespo MJ, Abarca ML, Cabanes FJ. Occurrence of Malassezia spp. in the external ear canals of dogs and cats with and without otitis externa. Med Mycol. 2002;40:115–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Bond R, Guillot J, Cabanes J. Malassezia yeasts in animal diseases. In: Boekhout T, Guého-Kellermann E, Mayser P, Velegraki A, editors. Malassezia and the skin. Berlin: Springer; 2010. p. 271–99.Google Scholar
  4. 4.
    Chen TA, Hill PB. The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol. 2005;16:4–26.PubMedCrossRefGoogle Scholar
  5. 5.
    ESCCAP. Guideline 2 superficial mycoses in dogs and cats. 2011.
  6. 6.
    Bernardo FM, Martins HM, Martins ML. A survey of mycotic otitis externa of dogs in Lisbon. Rev Iberoam Micol. 1998;15:163–5.PubMedGoogle Scholar
  7. 7.
    Coutinho SD, Paula CR. Susceptibility to antifungal agents of Malassezia pachydermatis isolates from dogs. Pol J Vet Sci. 2001;4:77–81.Google Scholar
  8. 8.
    Eichenberg M, Appelt CE, Berg V, Muschner A, Nobre M, Mata D, Alves S, Ferreiro L. Susceptibility of Malassezia pachydermatis to azole antifungal agents evaluated by a new broth microdilution method. Acta Sci Vet. 2003;31:75–80.Google Scholar
  9. 9.
    Lyskova P, Vydrzalova M, Mazurova J. Identification and antimicrobial susceptibility of bacteria and yeasts isolated from healthy dogs and dogs with otitis externa. J Vet Med A Physiol Pathol Clin Med. 2007;54:559–63.PubMedCrossRefGoogle Scholar
  10. 10.
    Rougier S, Borell D, Pheulpin S, Woehrle F, Boisrame B. A comparative study of two antimicrobial/anti-inflammatory formulations in the treatment of canine otitis externa. Vet Dermatol. 2005;16:299–307.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakano Y, Wada M, Tani H, Sasai K, Baba E. Effects of beta-thujaplicin on anti-Malassezia pachydermatis remedy for canine otitis externa. J Vet Med Sci. 2005;67:1243–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Arikan S. Current status of antifungal susceptibility testing methods. Med Mycol. 2007;45:569–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Canton E, Espinel-Ingroff A, Peman J. Trends in antifungal susceptibility testing using CLSI reference and commercial methods. Expert Rev Anti Infect Ther. 2009;7:107–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson EM. Issues in antifungal susceptibility testing. J Antimicrob Chemother. 2008;61:13–8.CrossRefGoogle Scholar
  15. 15.
    Hensel P, Austel M, Wooley RE, Keys D, Ritchie BW. In vitro and in vivo evaluation of a potentiated miconazole aural solution in chronic malassezia otitis externa in dogs. Vet Dermatol. 2009;20:429–434.Google Scholar
  16. 16.
    Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard, M27-A3. 3rd ed. Wayne, PA: NCCLS; 2008.Google Scholar
  17. 17.
    Peano A, Beccati M, Chiavassa E, Pasquetti M. Evaluation of the antifungal susceptibility of Malassezia pachydermatis to clotrimazole, miconazole and thiabendazole using a modified CLSI M27-A3 microdilution method. Vet Dermatol. 2012;23:131–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Rincon S, Cepero de Garcia MC, Espinel-Ingroff A. A modified Christensen’s urea and CLSI broth microdilution method for testing susceptibilities of six Malassezia species to voriconazole, itraconazole, and ketoconazole. J Clin Microbiol. 2006;44:3429–31.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Cafarchia C, Figueredo LA, Iatta R, Montagna MT, Otranto D. In vitro antifungal susceptibility of Malassezia pachydermatis from dogs with and without skin lesions. Vet Microbiol. 2012;155:395–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Cafarchia C, Figueredo LA, Iatta R, Colao V, Montagna MT, Otranto D. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Med Mycol. 2012;50:795–801.PubMedCrossRefGoogle Scholar
  21. 21.
    Cafarchia C, Figueredo LA, Favuzzi V, Surico MR, Colao V, Iatta R, Montagna MT, Otranto D. Assessment of the antifungal susceptibility of Malassezia pachydermatis in various media using a CLSI protocol. Vet Microbiol. 2012;159:536–40.PubMedCrossRefGoogle Scholar
  22. 22.
    Lorenzini R, Mercantini R, De Bernardis F. In vitro sensitivity of Malassezia spp. to various antimycotics. Drugs Exp Clin Res. 1985;11:393–5.PubMedGoogle Scholar
  23. 23.
    Nascente PDS, Nobre MD, Schuch LF, Lucia-Junior T, Ferreiro L, Meireles MCA. Evaluation of Malassezia pachydermatis antifungal susceptibility using two different methods. Braz J Microbiol. 2003;34:359–62.CrossRefGoogle Scholar
  24. 24.
    Nascente PDS, Mano Meinerz AR, de Faria RO, Dame Schuch LF, Araujo Meireles MC, Bragade Mello JR. Comparison of the broth microdilution technique and ETEST to ketoconazole front Malassezia pachydermatis. Braz J Vet Res Anim Sci. 2009;40:222–6.Google Scholar
  25. 25.
    Nascente PDS, Mano Meinerz AR, Faria RO, Dame Schuch LF, Araujo Meireles MC, Mello JRB. CLSI broth microdilution method for testing susceptibility of Malassezia pachydermatis to thiabendazole. Braz J Microbiol. 2009;40:222–6.PubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nijima M, Kano R, Nagata M, Hasegawa A, Kamata H. An azole-resistant isolate of Malassezia pachydermatis. Vet Microbiol. 2011;149:288–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Jesus FPK, Lautert C, Zanette RA, Mahl DL, Azevedo MI, Machado MLS, Dutra V, Botton SA, Alves SH, Santurio JM. In vitro susceptibility of fluconazole-susceptible and -resistant isolates of Malassezia pachydermatis against azoles. Vet Microbiol. 2011;152:161–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Gupta AK, Kohli Y, Li A, Faergemann J, Summerbell RC. In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol. 2000;142:758–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Uchida Y, Nakade T, Kitazawa K. In vitro activity of five antifungal agents against Malassezia pachydermatis. Nihon Juigaku Zasshi. 1990;52:851–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, Lancaster M, Odds FC, Rinaldi MG, Walsh TJ, Barry AL. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro–in vivo correlation data for fluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis. 1997;24:235–47.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Settore di Parassitologia e Malattie Parassitarie, Dipartimento di Scienze VeterinarieUniversità degli Studi di TorinoTurinItaly

Personalised recommendations