, Volume 177, Issue 3–4, pp 199–206 | Cite as

Sporothrix schenckii sensu stricto Isolated from Soil in an Armadillo’s Burrow

  • Anderson Messias Rodrigues
  • Eduardo Bagagli
  • Zoilo Pires de Camargo
  • Sandra de Moraes Gimenes Bosco


Sporotrichosis is a polymorphic disease of man and animals caused by traumatic implantation of propagules into the skin and subcutaneous tissue. Pathogenic species includes S. brasiliensis, S. schenckii, S. globosa and S. luriei. The disease is remarkable for its occurrence as sapronoses and/or zoonosis outbreaks in tropical and subtropical areas; although, the ecology of the clinical clade is still puzzling. Here, we describe an anamorphic Sporothrix strain isolated from soil in an armadillo’s burrow, which was located in a hyper endemic area of Paracoccidioidomycosis in Brazil. This isolate was identified as S. schenckii sensu stricto (Clade IIa) based on morphological and physiological characteristics and phylogenetic analyses of calmodulin sequences. We then discuss the role of the nine-banded armadillo Dasypus novemcinctus as a natural carrier of Sporothrix propagules to better understand Sporothrix sources in nature and reveal essential aspects about the pathogen’s eco-epidemiology.


Armadillo Sporothrix schenckii Soil Sporotrichosis Eco-epidemiology Ecology 



A.M.R is a fellow and acknowledges the financial support of the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-2011/07350-1). E.B and S.M.G.B (FAPESP-1998/03695-8), and Z.P.C acknowledge the financial support of FAPESP (2009/54024-2). The authors also thanks to Professor Mario Rubens Guimarães Montenegro (in memorian) for histopathology analysis and helpful discussions.


  1. 1.
    Rodrigues AM, de Hoog S, de Camargo ZP. Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol. 2013;51:405–12.PubMedCrossRefGoogle Scholar
  2. 2.
    Rodrigues AM, de Melo Teixeira M, de Hoog GS, Schubach TMP, Pereira SA, Fernandes GF, et al. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis 2013;7(6):e2281.Google Scholar
  3. 3.
    Marimon R, Gené J, Cano J, Trilles L, Dos Santos Lazéra M, Guarro J. Molecular phylogeny of Sporothrix schenckii. J Clin Microbiol. 2006;44:3251–6.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Zhou X, Rodrigues AM, Feng P, Hoog GS. Global ITS diversity in the Sporothrix schenckii complex. Fungal Divers. 2013;. doi: 10.1007/s13225-013-0220-2.Google Scholar
  5. 5.
    Marimon R, Cano J, Gené J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007;45:3198–206.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Marimon R, Gené J, Cano J, Guarro J. Sporothrix luriei: a rare fungus from clinical origin. Med Mycol. 2008;46:621–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Romeo O, Scordino F, Criseo G. New insight into molecular phylogeny and epidemiology of Sporothrix schenckii species complex based on calmodulin-encoding gene analysis of Italian isolates. Mycopathologia. 2011;172:179–86.PubMedCrossRefGoogle Scholar
  8. 8.
    Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence. 2013;4:241–9.Google Scholar
  9. 9.
    Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Mariné M, Gené J, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15:651–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Marimon R, Serena C, Gené J, Cano J, Guarro J. In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob Agents Chemother. 2008;52:732–4.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Zipfel RD, de Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ. Multi-gene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol. 2006;55:75–97.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Costa EO, Diniz LS, Netto CF, Arruda C, Dagli ML. Epidemiological study of sporotrichosis and histoplasmosis in captive Latin American wild mammals, São Paulo. Braz Mycopathol. 1994;125:19–22.CrossRefGoogle Scholar
  13. 13.
    Rodrigues MT, de Resende MA. Epidemiologic skin test survey of sensitivity to paracoccidioidin, histoplasmin and sporotrichin among gold mine workers of Morro Velho mining. Braz Mycopathol. 1996;135:89–98.CrossRefGoogle Scholar
  14. 14.
    Barrozo LV, Benard G, Silva MES, Bagagli E, Marques SA, Mendes RP. First description of a cluster of acute/subacute paracoccidioidomycosis cases and its association with a climatic anomaly. PLoS Negl Trop Dis. 2010;4(3):e643.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    O’Donnell K, Nirenberg H, Aoki T, Cigelnik E. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience. 2000;41:61–78.CrossRefGoogle Scholar
  16. 16.
    Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, et al. SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol. 2012;61:90–106.PubMedCrossRefGoogle Scholar
  17. 17.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.PubMedCrossRefGoogle Scholar
  19. 19.
    de Vienne DM, Giraud T, Martin OC. A congruence index for testing topological similarity between trees. Bioinformatics. 2007;23:3119–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Rogers AL, Beneke ES. Human pathogenic fungi recovered from Brazilian soil. Mycopathol Mycol Appl. 1964;22:15–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Silva ME. Isolation of Histoplasma capsulatum from soil in an endemic area of kala-azar, in Bahia. Braz Fundação Gonçalo Moniz. 1956;10:15.Google Scholar
  22. 22.
    Howard DH, Orr GF. Comparison of strains of Sporotrichum schenckii isolated from nature. J Bacteriol. 1963;85:816–21.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Vismer HF, Hull PR. Prevalence, epidemiology and geographical distribution of Sporothrix schenckii infections in Gauteng. South Afr Mycopathol. 1997;137:137–43.CrossRefGoogle Scholar
  24. 24.
    Ishizaki H, Kawasaki M, Mochizuki T, Jin XZ, Kagawa S. Environmental isolates of Sporothrix schenckii in China. Nihon Ishinkin Gakkai Zasshi. 2002;43:257–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Mendoza M, Diaz E, Alvarado P, Romero E. Bastardo de Albornoz MC. Isolation of Sporothrix schenckii from environmental samples in Venezuela. Rev Iberoam Micol. 2007;24:317–9.Google Scholar
  26. 26.
    Mehta KIS, Sharma NL, Kanga AK, Mahajan VK, Ranjan N. Isolation of Sporothrix schenckii from the environmental sources of cutaneous sporotrichosis patients in Himachal Pradesh, India: results of a pilot study. Mycoses. 2007;50:496–501.PubMedCrossRefGoogle Scholar
  27. 27.
    Sanchez-Aleman MA, Araiza J, Bonifaz A. Isolation and characterization of wild Sporothrix schenkii strains and investigation of sporototrichin reactors. Gac Medics de Mexico. 2004;140:507–12.Google Scholar
  28. 28.
    Dixon DM, Salkin IF, Duncan RA, Hurd NJ, Haines JH, Kemna ME, et al. Isolation and characterization of Sporothrix schenckii from clinical and environmental sources associated with the largest U.S. epidemic of sporotrichosis. J Clin Microbiol. 1991;29:1106–13.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Mackinnon JE, Conti-Díaz IA, Gezuele E, Civila E, Da Luz S. Isolation of Sporothrix schenckii from nature and considerations on its pathogenicity and ecology. Med Mycol. 1969;7:38–45.CrossRefGoogle Scholar
  30. 30.
    Truman RW, Shannon EJ, Hagstad HV, Hugh-Jones ME, Wolff A, Hastings RC. Evaluation of the origin of Mycobacterium leprae infections in the wild armadillo, Dasypus novemcinctus. Am J Trop Med Hyg. 1986;35:588–93.PubMedGoogle Scholar
  31. 31.
    da Silva RC, Zetun CB, Bosco Sde M, Bagagli E, Rosa PS, Langoni H. Toxoplasma gondii and Leptospira spp. infection in free-ranging armadillos. Vet Parasitol. 2008;157:291–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Bagagli E, Sano A, Coelho KI, Alquati S, Miyaji M, de Camargo ZP, et al. Isolation of Paracoccidioides brasiliensis from armadillos (Dasypus noveminctus) captured in an endemic area of paracoccidioidomycosis. Am J Trop Med Hyg. 1998;58:505–12.PubMedGoogle Scholar
  33. 33.
    Costa FAMd, Reis RC, Benevides F, Tomé GdS, Holanda MA. Pulmonary coccidioidomycosis in a armadillo hunter. J Pneumologia. 2001;27:275–8.Google Scholar
  34. 34.
    Wenker CJ, Kaufman L, Bacciarini LN, Robert N. Sporotrichosis in a nine-banded armadillo (Dasypus novemcinctus). J Zoo Wildl Med. 1998;29:474–8.PubMedGoogle Scholar
  35. 35.
    Kaplan W, Broderson JR, Pacific JN. Spontaneous systemic sporotrichosis in nine-banded armadillos (Dasypus novemcinctus). Sabouraudia. 1982;20:289–94.PubMedCrossRefGoogle Scholar
  36. 36.
    Alves SH, Boettcher CS, Oliveira DC, Tronco-Alves GR, Sgaria MA, Thadeu P, et al. Sporothrix schenckii associated with armadillo hunting in Southern Brazil: epidemiological and antifungal susceptibility profiles. Rev Soc Bras Med Trop. 2010;43:523–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Criseo G, Romeo O. Ribosomal DNA sequencing and phylogenetic analysis of environmental Sporothrix schenckii strains: comparison with clinical isolates. Mycopathologia. 2010;169:351–8.PubMedCrossRefGoogle Scholar
  38. 38.
    de Meyer EM, de Beer ZW, Summerbell RC, Moharram AM, de Hoog GS, Vismer HF, et al. Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenocerasSporothrix schenckii complex. Mycologia. 2008;100:647–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Roets F, Wingfield BD, de Beer ZW, Wingfield MJ, Dreyer LL. Two new Ophiostoma species from Protea caffra in Zambia. Persoonia-Mol Phylogeny Evol Fungi. 2010;24:18–28.CrossRefGoogle Scholar
  40. 40.
    Temple B, Pines PA, Hintz WE. A nine-year genetic survey of the causal agent of Dutch elm disease, Ophiostoma novo-ulmi in Winnipeg. Can Mycol Res. 2006;110:594–600.CrossRefGoogle Scholar
  41. 41.
    Madrid H, Gené J, Cano J, Silvera C, Guarro J. Sporothrix brunneoviolacea and Sporothrix dimorphospora, two new members of the Ophiostoma stenocerasSporothrix schenckii complex. Mycologia. 2010;102:1193–203.PubMedCrossRefGoogle Scholar
  42. 42.
    Cruz R, Vieille P, Oschilewski D. Sporothrix globosa isolation related to a case of lymphocutaneous sporotrichosis. Rev Chil Infectol. 2012;29:401–5.CrossRefGoogle Scholar
  43. 43.
    Sasaki AA, Fernandes GF, Rodrigues AM, Lima FM, Marini MM, Feitosa LS, et al. Chromosomal polymorphisms in the Sporothrix schenckii complex. PLoS ONE. doi: 10.1371/journal.pone.0086819.

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Anderson Messias Rodrigues
    • 1
  • Eduardo Bagagli
    • 2
  • Zoilo Pires de Camargo
    • 1
  • Sandra de Moraes Gimenes Bosco
    • 2
  1. 1.Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de São PauloSão PauloBrazil
  2. 2.Departamento de Microbiologia e Imunologia, Instituto de Biociências de BotucatuUniversidade Estadual Paulista (UNESP)BotucatuBrazil

Personalised recommendations