, Volume 177, Issue 1–2, pp 75–79 | Cite as

Candida albicans and Candida parapsilosis Rapidly Up-Regulate Galectin-3 Secretion by Human Gingival Epithelial Cells



Galectin-3 is a β-galactoside-binding C-type lectin that plays an important role in innate immunity. The purpose of this study was to determine whether Candida albicans and Candida parapsilosis up-regulate galectin-3 secretion by human gingival epithelial cells and gingival fibroblasts. Ca9-22, a human gingival epithelial cell line, and human gingival fibroblasts were incubated in the presence or absence of C. albicans or C. parapsilosis without serum. Levels of secreted human galectin-3 in culture supernatants were measured by enzyme-linked immunosorbent assay. We also pretreated Ca9-22 cells with cytochalasin D (an actin polymerization inhibitor), ALLN (a calpain inhibitor) and LY294002 [a phosphatidylinositol-3 kinase (PI3K) inhibitor] to determine whether the up-regulation of galectin-3 secretion was mediated by cytoskeletal changes, protease activity, or PI3K signaling. Galectin-3 secretion was significantly and rapidly up-regulated by live C. albicans and C. parapsilosis, as well as heat-killed C. albicans. In addition, cytochalasin D, LY294002 and ALLN did not inhibit the up-regulation in galectin-3 secretion. These results suggest that both live and heat-killed C. albicans and C. parapsilosis may increase the activity of the innate immune system and invasion by other microorganisms via up-regulation of galectin-3 secretion.


Candida albicans Galectin-3 Human gingival epithelial cells Cell motility Candida parapsilosis Human gingival fibroblasts 



This study was supported by a Grant-in-Aid for Scientific Research (C) (No. 23592709) from the Ministry of Education, Culture, Sports, Science and Technology, and a Grant-in-Aid for Scientific Research from the Ohu University School of Dentistry.


  1. 1.
    Samaranayake LP, Lamb AB, Lamey PJ, MacFarlane TW. Oral carriage of Candida species and coliforms in patients with burning mouth syndrome. J Oral Pathol Med. 1989;18:233–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1107–17.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Jouault T, El Abed-El Behi M, Martinez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol. 2006;177:4679–87.PubMedGoogle Scholar
  4. 4.
    Netea MG, Gow NA, Munro CA, Bates S, Collins C, Ferwerda G, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116:1642–50.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR. Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA. 2011;108:14270–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science. 2004;306:120–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Argueso P, Guzman-Aranguez A, Mantelli F, Cao Z, Ricciuto J, Panjwani N. Association of cell surface mucins with galectin-3 contributes to the ocular surface epithelial barrier. J Biol Chem. 2009;284:23037–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P, Liu FT, et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J Immunol. 2006;176:778–89.PubMedGoogle Scholar
  9. 9.
    Quattroni P, Li Y, Lucchesi D, Lucas S, Hood DW, Herrmann M, et al. Galectin-3 binds Neisseria meningitidis and increases interaction with phagocytic cells. Cell Microbiol. 2012;14:1657–75.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Larsen L, Chen HY, Saegusa J, Liu FT. Galectin-3 and the skin. J Dermatol Sci. 2011;64:85–91.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fowler M, Thomas RJ, Atherton J, Roberts IS, High NJ. Galectin-3 binds to Helicobacter pylori O-antigen: it is upregulated and rapidly secreted by gastric epithelial cells in response to H. pylori adhesion. Cell Microbiol. 2006;8:44–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Reales-Calderon JA, Martinez-Solano L, Martinez-Gomariz M, Nombela C, Molero G, Gil C. Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. J Proteomics. 2012;75:4734–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG. Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol. 2006;177:4718–26.PubMedGoogle Scholar
  14. 14.
    Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. 2013;51:641–51.PubMedCrossRefGoogle Scholar
  15. 15.
    Tamai R, Sugamata M, Kiyoura Y. Amphotericin B up-regulates lipid A-induced IL-6 production via caspase-8. J Dent Res. 2012;91:709–14.Google Scholar
  16. 16.
    Shi J, Zeng X, Zhou M, Chen Q. Activation of ERK-FAK signaling pathway and enhancement of cell migration involved in the early interaction between oral keratinocytes and Candida albicans. Mycopathologia. 2009;167:1–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Chan KT, Bennin DA, Huttenlocher A. Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). J Biol Chem. 2010;285:11418–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Menon S, Kang CM, Beningo KA. Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochem Biophys Res Commun. 2011;410:91–6.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev. 2003;83:731–801.PubMedGoogle Scholar
  20. 20.
    Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR. Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol. 2006;26:3181–93.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Beltran L, Chaussade C, Vanhaesebroeck B, Cutillas PR. Calpain interacts with class IA phosphoinositide 3-kinases regulating their stability and signaling activity. Proc Natl Acad Sci USA. 2011;108:16217–22.PubMedCrossRefGoogle Scholar
  22. 22.
    Kamagata-Kiyoura Y, Abe S, Yamaguchi H, Nitta T. Protective effects of human saliva on experimental murine oral candidiasis. J Infect Chemother. 2004;10:253–5.PubMedGoogle Scholar
  23. 23.
    Tamai R, Sugamata M, Kiyoura Y. Candida albicans enhances invasion of human gingival epithelial cells and gingival fibroblasts by Porphyromonas gingivalis. Microb Pathog. 2011;51:250–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Goetz JG, Joshi B, Lajoie P, Strugnell SS, Scudamore T, Kojic LD, et al. Concerted regulation of focal adhesion dynamics by galectin-3 and tyrosine-phosphorylated caveolin-1. J Cell Biol. 2008;180:1261–75.PubMedGoogle Scholar
  25. 25.
    Schaller M, Schafer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol. 1998;29:605–15.PubMedCrossRefGoogle Scholar
  26. 26.
    Peyret-Lacombe A, Brunel G, Watts M, Charveron M, Duplan H. TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. Cytokine. 2009;46:201–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Lavigne LM, O’Brien XM, Kim M, Janowski JW, Albina JE, Reichner JS. Integrin engagement mediates the human polymorphonuclear leukocyte response to a fungal pathogen-associated molecular pattern. J Immunol. 2007;178:7276–82.PubMedGoogle Scholar
  28. 28.
    Furtak V, Hatcher F, Ochieng J. Galectin-3 mediates the endocytosis of beta-1 integrins by breast carcinoma cells. Biochem Biophys Res Commun. 2001;289:845–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Wellington M, Dolan K, Krysan DJ. Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect Immun. 2009;77:405–13.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Toth A, Csonka K, Jacobs C, Vagvolgyi C, Nosanchuk JD, Netea MG, et al. Candida albicans and Candida parapsilosis induce different T-Cell Responses in human peripheral blood mononuclear cells. J Infect Dis. 2013;208:690–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Funayama M, Nishikawa A, Shinoda T, Suzuki M, Fukazawa Y. Antigenic relationship between Candida parapsilosis and Candida albicans serotype B. Microbiol Immunol. 1984;28:1359–71.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatakeyama J, Tamai R, Sugiyama A, Akashi S, Sugawara S, Takada H. Contrasting responses of human gingival and periodontal ligament fibroblasts to bacterial cell-surface components through the CD14/Toll-like receptor system. Oral Microbiol Immunol. 2003;18:14–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Dumic J, Lauc G, Flogel M. Expression of galectin-3 in cells exposed to stress-roles of jun and NF-kappaB. Cell Physiol Biochem. 2000;10:149–58.PubMedCrossRefGoogle Scholar
  34. 34.
    Baptiste TA, James A, Saria M, Ochieng J. Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res. 2007;313:652–64.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem. 2003;270:2109–19.PubMedCrossRefGoogle Scholar
  36. 36.
    Saravanan C, Liu FT, Gipson IK, Panjwani N. Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci. 2009;122:3684–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Papaspyridonos M, McNeill E, de Bono JP, Smith A, Burnand KG, Channon KM, et al. Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler Thromb Vasc Biol. 2008;28:433–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Fernandes Bertocchi AP, Campanhole G, Wang PH, Goncalves GM, Damiao MJ, Cenedeze MA, et al. A Role for galectin-3 in renal tissue damage triggered by ischemia and reperfusion injury. Transpl Int. 2008;21:999–1007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Oral Medical ScienceOhu University School of DentistryKoriyamaJapan

Personalised recommendations