Advertisement

Mycopathologia

, Volume 176, Issue 1–2, pp 165–169 | Cite as

Antifungal Activities of Diphenyl Diselenide alone and in Combination with Fluconazole or Amphotericin B against Candida glabrata

  • Laura Bedin Denardi
  • Débora Alves Nunes Mario
  • Érico Silva de Loreto
  • Cristina Wayne Nogueira
  • Janio Morais Santurio
  • Sydney Hartz Alves
Article

Abstract

Here, we evaluated combinations of diphenyl diselenide [(PhSe)2] with fluconazole and amphotericin B in a checkerboard assay against clinical Candida glabrata strains. Minimal inhibitory concentration (geometric mean) ranged from 0.25 to >64 (5.16 μg/mL) for (PhSe)2, 1 to 32 (5.04 μg/mL) for fluconazole and 0.06 to 0.5 (0.18 μg/mL) for amphotericin B. Synergistic (76.66 %) and indifferent (23.34 %) interactions were observed for (PhSe)2 + amphotericin B combination. (PhSe)2 + fluconazole combination demonstrated indifferent (50 %) and antagonistic (40 %) interactions, whereas synergistic interactions were observed in 10 % of the isolates. New experimental in vivo protocols are necessary and will promote a better understanding of the antimicrobial activity of (PhSe)2 against C. glabrata and its use as an adjuvant therapy with antifungal agents.

Keywords

Antifungal drug combination Candidaglabrata Diphenyl diselenide 

Notes

Acknowledgments

Érico Silva de Loreto is financially supported by fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (PNPD-CAPES).

References

  1. 1.
    Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36:288–305.PubMedCrossRefGoogle Scholar
  2. 2.
    Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.PubMedCrossRefGoogle Scholar
  3. 3.
    Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009;48:1695–703.PubMedCrossRefGoogle Scholar
  4. 4.
    Pfaller MA, Castanheira M, Messer SA, Moet GJ, Jones RN. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: report from the SENTRY Antimicrobial Surveillance Program (2008–2009). Diagn Microbiol Infect Dis. 2010;68:278–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Furlaneto-Maia L, Specian AF, Bizerra FC, de Oliveira MT, Furlaneto MC. In vitro evaluation of putative virulence attributes of oral isolates of Candida spp. obtained from elderly healthy individuals. Mycopathologia. 2008;166:209–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Azevedo AC, Bizerra FC, da Matta DA, de Almeida LP, Rosas R, Colombo AL. In vitro susceptibility of a large collection of Candida strains against fluconazole and voriconazole by using the CLSI disk diffusion assay. Mycopathologia. 2011;171:411–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Passos XS, Costa CR, Araujo CR, Nascimento ES, Souza LKHE, Fernandes ODL, et al. Species distribution and antifungal susceptibility patterns of Candida spp. bloodstream isolates from a Brazilian tertiary care hospital. Mycopathologia. 2007;163:145–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Fidel PL, Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev. 1999;12:80–96.PubMedGoogle Scholar
  9. 9.
    Pfaller MA, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, et al. Variation in susceptibility of bloodstream isolates of Candida glabrata to Fluconazole according to patient age and geographic location in the United States in 2001–2007. J Clin Microbiol. 2009;47:3185–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Pfaller MA, Messer SA, Boyken L, Tendolkar S, Hollis RJ, Diekema DJ. Geographic variation in the susceptibilities of invasive isolates of Candida glabrata to seven systemically active antifungal agents: a global assessment from the ARTEMIS antifungal surveillance program conducted in 2001 and 2002. J Clin Microbiol. 2004;42:3142–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Sellami A, Sellami H, Neji S, Makni F, Abbes S, Cheikhrouhou F, et al. Antifungal susceptibility of bloodstream Candida isolates in Sfax Hospital: Tunisia. Mycopathologia. 2011;171:417–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Bonfietti LX, Szeszs MW, Chang MR, Martins MA, Pukinskas SRBS, Nunes MO, et al. Ten-year study of species distribution and antifungal susceptibilities of Candida bloodstream isolates at a Brazilian tertiary hospital. Mycopathologia. 2012;174:389–96.PubMedCrossRefGoogle Scholar
  13. 13.
    Metin DY, Hilmioglu-Polat S, Samlioglu P, Doganay-Oflazoglu B, Inci R, Tumbay E. Evaluation of antifungal susceptibility testing with microdilution and Etest methods of Candida blood isolates. Mycopathologia. 2011;172:187–99.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell BC, Chan KL, Kim JH. Chemosensitization as a means to augment commercial antifungal agents. Front Microbiol. 2012;3:79.PubMedGoogle Scholar
  15. 15.
    Khodavandi A, Alizadeh F, Aala F, Sekawi Z, Chong PP. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species. Mycopathologia. 2010;169:287–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev. 2004;104:6255–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Nogueira CW, Rocha JBT. Diphenyl diselenide a Janus-faced molecule. J Braz Chem Soc. 2010;21:2055–71.CrossRefGoogle Scholar
  18. 18.
    Nogueira CW, Rocha JBT. Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol. 2011;85:1313–59.PubMedCrossRefGoogle Scholar
  19. 19.
    Loreto ES, Mario DA, Santurio JM, Alves SH, Nogueira CW, Zeni G. In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues. Mycoses. 2011;54:e572–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosseti IB, Wagner C, Fachinetto R, Taube P, Costa MS. Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (p–Cl–PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses. 2011;54:506–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Loreto ES, Alves SH, Santurio JM, Nogueira CW, Zeni G. Diphenyl diselenide in vitro and in vivo activity against the oomycete Pythium insidiosum. Vet Microbiol. 2012;156:222–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Billack B, Santoro M, Lau-Cam C. Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H+-ATPase. Microb Drug Resist. 2009;15:77–83.PubMedCrossRefGoogle Scholar
  23. 23.
    Paulmier C. Selenoorganic functional groups. In: Paulmier C, editor. Selenium reagents and intermediates in organic synthesis. 1st ed. Oxford: Pergamon Press; 1986. p. 25–57.Google Scholar
  24. 24.
    Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. 3rd ed. Wayne: Clinical and Laboratory Standards Institute; 2008.Google Scholar
  25. 25.
    Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH. Combination antifungal therapy. Antimicrob Agents Chemother. 2004;48:693–715.PubMedCrossRefGoogle Scholar
  26. 26.
    Meotti FC, Borges VC, Zeni G, Rocha JBT, Nogueira CW. Potential renal and hepatic toxicity of diphenyl diselenide, diphenyl ditelluride and Ebselen for rats and mice. Toxicol Lett. 2003;143:9–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Wilhelm EA, Jesse CR, Nogueira CW, Savegnago L. Introduction of trifluoromethyl group into diphenyl diselenide molecule alters its toxicity and protective effect against damage induced by 2-nitropropane in rats. Exp Toxicol Pathol. 2009;61:197–203.PubMedCrossRefGoogle Scholar
  28. 28.
    Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50:243–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Mario DAN, Denardi LB, Bandeira LA, Antunes MS, Santurio JM, Severo LC, et al. The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates. Mem Inst Oswaldo Cruz. 2012;107:433–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Denning DW, Baily GG, Hood SV. Azole resistance in Candida. Eur J Clin Microbiol Infect Dis. 1997;16:261–80.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005;49:668–79.PubMedCrossRefGoogle Scholar
  32. 32.
    Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother. 2004;48:1773–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36:630–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Marcos-Arias C, Eraso E, Madariaga L, Carrillo-Munoz AJ, Quindos G. In vitro activities of new triazole antifungal agents, posaconazole and voriconazole, against oral Candida isolates from patients suffering from denture stomatitis. Mycopathologia. 2012;173:35–46.PubMedCrossRefGoogle Scholar
  35. 35.
    Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RI, et al. Use of fluconazole as a surrogate marker to predict susceptibility and resistance to voriconazole among 13,338 clinical isolates of Candida spp. tested by clinical and laboratory standards institute-recommended broth microdilution methods. J Clin Microbiol. 2007;45:70–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Cross EW, Park S, Perlin DS. Cross-resistance of clinical isolates of Candida albicans and Candida glabrata to over-the-counter azoles used in the treatment of vaginitis. Microb Drug Resist. 2000;6:155–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Alves IA, Bandeira LA, Mario DA, Denardi LB, Neves LV, Santurio JM, et al. Effects of antifungal agents alone and in combination against Candida glabrata strains susceptible or resistant to fluconazole. Mycopathologia. 2012;174:215–21.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Laura Bedin Denardi
    • 1
  • Débora Alves Nunes Mario
    • 1
  • Érico Silva de Loreto
    • 2
  • Cristina Wayne Nogueira
    • 3
  • Janio Morais Santurio
    • 2
  • Sydney Hartz Alves
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da SaúdeUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  2. 2.Programa de Pós-Graduação em Farmacologia, Centro de Ciências da SaúdeUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  3. 3.Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências da SaúdeUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil

Personalised recommendations