Skip to main content

Advertisement

Log in

Deletion of the Candida albicans PIR32 Results in Increased Virulence, Stress Response, and Upregulation of Cell Wall Chitin Deposition

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Candida albicans is a common opportunistic pathogen that causes a wide variety of diseases in a human immunocompromised host leading to death. In a pathogen, cell wall proteins are important for stability as well as for acting as antigenic determinants and virulence factors. Pir32 is a cell wall protein and member of the Pir protein family previously shown to be upregulated in response to macrophage contact and whose other member, Pir1, was found to be necessary for cell wall rigidity. The purpose of this study is to characterize Pir32 by generating a homozygous null strain and comparing the phenotype of the null with that of the wild-type parental strain as far as filamentation, virulence in a mouse model of disseminated candidiasis, resistance to oxidative stress and cell wall disrupting agents, in addition to adhesion, biofilm capacities, and cell wall chitin content. Our mutant was shown to be hyperfilamentous, resistant to sodium dodecyl sulfate, hydrogen peroxide, sodium chloride, and more virulent in a mouse model when compared to the wild type. These results were unexpected, considering that most cell wall mutations weaken the wall and render it more susceptible to external stress factors and suggests the possibility of a cell surface compensatory mechanism. As such, we measured cell wall chitin deposition and found a twofold increase in the mutant, possibly explaining the above-observed phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Karkowska-Kuleta J, Rapala-Kosik M, Kozik A. Fungi pathogenic to humans: molecular basis of virulence in Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. Acta Biochim Pol. 2009;56:211–24.

    PubMed  CAS  Google Scholar 

  2. Gyurko C, Lendenmann U, Troxler R, Oppenheim G. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother. 2000;44:348–54.

    Article  PubMed  CAS  Google Scholar 

  3. Mohan das V, Ballal M. Proteinase and phospholipase activity as virulence factors in Candida species isolated from blood. Rev Iberoam Micol. 2008;25:208–10.

    Google Scholar 

  4. Ten Cate J, Klis F, Pereira-Cemci T, Crielaard W, De Groot P. Molecular and cellular mechanisms that lead to Candida biofilm formation. J Dent Res. 2009;88:105–15.

    Article  PubMed  Google Scholar 

  5. Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12:317–24.

    Article  PubMed  CAS  Google Scholar 

  6. Ghannoum M. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.

    Article  PubMed  CAS  Google Scholar 

  7. Naglik J, Challacombe S, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.

    Article  PubMed  CAS  Google Scholar 

  8. Weissman Z, Kornitzer D. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol. 2004;53:1209–20.

    Article  PubMed  CAS  Google Scholar 

  9. Brown A, Odds F, Gow N. Infection-related gene expression in Candida albicans. Curr Opin Microbiol. 2007;10:307–13.

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y. Virulence factors of Candida species. J Microbiol Immunol Infect. 2003;36:223–8.

    PubMed  CAS  Google Scholar 

  11. Nett J, Guite K, Holoyda K, Andes D. Reduced biocide susceptibility in Candida albicans biofilms. Antimicrob Agents Chemother. 2008;52:3411–3.

    Article  PubMed  CAS  Google Scholar 

  12. Masuoka J. Surface glycans of Candida albicans and other pathogenic fungi. Physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev. 2004;17:281–310.

    Article  PubMed  CAS  Google Scholar 

  13. Tronchin G, Poulain D, Herbaut J, Biguet J. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur J Cell Biol. 1981;26:121–8.

    PubMed  CAS  Google Scholar 

  14. Kapteyn J, Hoyer L, Hecht J, Müller W, et al. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol. 2000;35:601–11.

    Article  PubMed  CAS  Google Scholar 

  15. Mormeneo M, Andres I, Bofill C, Diaz P, Zucco J. Efficient secretion of Bacillus subtillus lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Appl Microbiol Biotechnol. 2008;80:437–45.

    Article  PubMed  CAS  Google Scholar 

  16. De groot P, De boer A, Cunningham J, et al. Proteomic analysis of Candida albicans cell walls reveal covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell. 2004;3:955–65.

    Google Scholar 

  17. Mazan M, Mazanova K, Farkas V. Phenotype analysis of Saccharomyces cerevisiae mutants with deletions in Pir cell wall glycoproteins. Anton Leeuw. 2008;94:335–42.

    Article  CAS  Google Scholar 

  18. Martinez A, Castillo L, Garcera A, Elorza M, Valentin E, Sentandreu R. Role of Pir1 in the construction of the Candida albicans cell wall. Microbiology. 2004;150:3151–61.

    Article  PubMed  CAS  Google Scholar 

  19. Fernandez-Arenas E, Cabezon V, Bermejo C, et al. Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics. 2006;6:460–87.

    Article  PubMed  Google Scholar 

  20. Negredo A, Monteoliva L, Gil C, Pla J, Nombela C. Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology. 1997;143:297–302.

    Article  PubMed  CAS  Google Scholar 

  21. Kaiser C, Michaelis S, Mitchell A. Methods in yeast genetics. New York: Cold Spring Harbor Laboratory Press; 1994.

    Google Scholar 

  22. Hashash R, Younes S, Bahnan W, El Koussa J, Maalouf K, Khalaf R. Characterization of Pga1, a Candida albicans cell wall protein necessary for proper adhesion and biofilm formation. Mycoses. 2010 (Epub ahead of print).

  23. Hayek P, Yazbek P, Beyrouthy B, Khalaf R. Characterization of HWP2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Microbiol Res. 2010;165:250–8.

    Article  PubMed  CAS  Google Scholar 

  24. Khalaf R, Zitomer R. The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics. 2001;157:1503–12.

    PubMed  CAS  Google Scholar 

  25. Pedreno Y, Gonzalez-Parraga P, Martinez-Esperanza M, Sentandreu R, Valentin E, Arguelles J. Disruption of the Candida albicans ATC1 gene encoding a cell-linked acid trehalase decreases haypha formation and infectibity without affecting resistance to oxidative stress. Microbiology. 2007;151:1372–82.

    Article  Google Scholar 

  26. Tsuchimori N, Shrkey L, Fonzi W, French S, John E, Filler S. Reduced virulence of HWP1 deficient mutants of Candida albicans and their interactions with host cells. Infect Immun. 2000;68:1997–2002.

    Article  PubMed  CAS  Google Scholar 

  27. Younes S, Bahnan W, Khalaf R. The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance. Microbiol Res. 2010 (Epub ahead of print).

  28. Dib L, Hayek P, Beyrouthy B, Khalaf R. The C. albicans Ddr48 protein is essential for filamentation, stress response & confers partial antifungal drug resistance. Med Sci Monit. 2008;14:113–21.

    Google Scholar 

  29. Sharkey L, Liao W, Ghosh AK, Fonzi W. Flanking direct repeats of hisG alter URA3 marker expression at the HWP1 locus of Candida albicans. Microbiology. 2005;151:1061–71.

    Article  PubMed  CAS  Google Scholar 

  30. Chaffin L, Lopez-Ribot J, Casanova M, Gozalbo D, Martinez J. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev. 1998;62:130–80.

    PubMed  CAS  Google Scholar 

  31. Plaine A, Walker L, Da Costa G, et al. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet Biol. 2008;45:1404–14.

    Article  PubMed  CAS  Google Scholar 

  32. Garcia-Effron G, Kontoyiannis D, Lewis R, Perlin D. Caspofungin-resistant Candida tropicalis strains causing breakthrough fungemia in patients at high risk for hematologic malignancies. Antimicrob Agents Chemother. 2008;52:4181–3.

    Article  PubMed  CAS  Google Scholar 

  33. Jaafar L, Moukadiri I, Zueco J. Characterization of a disulphide-bound Pir-cell wall protein (Pir-CWP) of Yarrowia lipolytica. Yeast. 2003;20:417–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy A. Khalaf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahnan, W., Koussa, J., Younes, S. et al. Deletion of the Candida albicans PIR32 Results in Increased Virulence, Stress Response, and Upregulation of Cell Wall Chitin Deposition. Mycopathologia 174, 107–119 (2012). https://doi.org/10.1007/s11046-012-9533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-012-9533-z

Keywords

Navigation