, Volume 173, Issue 4, pp 259–264 | Cite as

Evaluation of the Commercial Rapid Trehalose Test (GLABRATA RTT) for the Point of Isolation Identification of Candida glabrata Isolates in Primary Cultures

  • Mark Fraser
  • Andrew M. Borman
  • Elizabeth M. Johnson


Candidaemias account for 10–20% of nosocomial bloodstream infections depending on the study. Whilst Candida albicans remains the most frequently isolated species, Candida glabrata may be responsible for as many as 10–25% of all candidaemias. Moreover, C. glabrata is generally less susceptible to the azole antifungals than the majority of other pathogenic yeast species. Thus, a rapid test for the specific identification of isolates of C. glabrata would be useful for patient management if it could be performed at point of isolation, on primary cultures grown on standard mycological media directly from patient specimens. Under certain conditions, C. glabrata rapidly hydrolyses trehalose into glucose. The GLABRATA RTT kit allows detection of the preformed enzyme responsible for this action. This study has assessed GLABRATA RTT as an identification tool specifically at point of isolation. Sixty test isolates were evaluated: 39 clinical isolates of C. glabrata identified at the UK Mycology Reference Laboratory, examples of the recently described genetic relatives of C. glabrata, Candida nivariensis (n = 6) and Candida bracarensis (n = 1), and a selection of other common pathogenic yeast species (n = 14). The test provided results within 30 min. Although 77% (30/39) of confirmed C. glabrata isolates were correctly identified by GLABRATA RTT (positive trehalase test), 23% (9/39) of isolates gave negative or equivocal results. All other yeast species gave negative results. The performance of GLABRATA RTT in this study is compared to previous evaluations of the test which employed isolates pre-cultured on specialised media and to other existing conventional identification methodologies.


Candida glabrata Identification Rapid trehalose test Candidaemia Point of isolation identification 



We are grateful to the other members of the Mycology Reference Laboratory for their interest and advice.

Conflict of interest

AMB has previously received travel grants from Biotage AB, Sweden.


  1. 1.
    Ruhnke M. Epidemiology of Candida albicans infections and role of non-Candida albicans yeasts. Curr Drug Targets. 2006;7:495–504.PubMedCrossRefGoogle Scholar
  2. 2.
    Wright WL, Wenzel RP. Nosocomial Candida. Epidemiology, transmission and prevention. Infect Dis Clin N Am. 1997;11:411–25.CrossRefGoogle Scholar
  3. 3.
    Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;54:243–60.CrossRefGoogle Scholar
  4. 4.
    Fidel PL Jr, Vazquez JA, Sobel JD. Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to Candida albicans. Clin Microbiol Rev. 1999;12:80–9.PubMedGoogle Scholar
  5. 5.
    Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD. Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.PubMedCrossRefGoogle Scholar
  6. 6.
    Sheppard DC, Locas MC, Restieri C, Laverdiere M. Utility of the germ tube test for direct identification of Candida albicans from positive blood culture bottles. J Clin Microbiol. 2008;46:3508–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Sanguinetti M, Porta R, Sali M, La Sorda M, Pecorini G, Fadda G, Posteraro B. Evaluation of VITEK2 and RapID Yeast Plus systems for yeast species identification: experience at a large clinical microbiology laboratory. J Clin Microbiol. 2007;45:1343–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Wadlin JK, Hanko G, Stewart R, Pape J, Nachamkin I. Comparison of three commercial systems for identification of yeasts commonly isolated in the clinical microbiology laboratory. J Clin Microbiol. 1999;37:1967–70.PubMedGoogle Scholar
  9. 9.
    Smith MB, Dunklee D, Vu H, Woods GL. Comparative performance of the RapID Yeast Plus system and the API 20C AUX clinical yeast system. J Clin Microbiol. 1999;37:2697–8.PubMedGoogle Scholar
  10. 10.
    Hata DJ, Hall L, Fothergill AW, Larone DH, Wengenack NL. Multicenter evaluation of the new VITEK 2 advanced colorimetric yeast identification card. J Clin Microbiol. 2007;45:1087–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Graf B, Adam T, Zill E, Göbel UB. Evaluation of the VITEK 2 system for the rapid identification of yeasts and yeast-like organisms. J Clin Microbiol. 2000;38:1782–5.PubMedGoogle Scholar
  12. 12.
    Espinel-Ingroff A, Stockman L, Roberts G, Pincus D, Pollack J, Marler J. Comparison of RapID yeast plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J Clin Microbiol. 1998;36:883–6.PubMedGoogle Scholar
  13. 13.
    Campbell CK, Davey KG, Holmes AD, Szekely A, Warnock DW. Comparison of the API Candida system with the AUXACOLOR system for identification of common yeast pathogens. J Clin Microbiol. 1999;37:821–3.PubMedGoogle Scholar
  14. 14.
    Fenn JP, Billetdeaux E, Segal H, Skodack-Jones L, Padilla PE, Bale M, Carroll K. Comparison of four methodologies for the rapid and cost-effective identification of Candida glabrata. J Clin Microbiol. 1999;37:3387–9.PubMedGoogle Scholar
  15. 15.
    Borman AM, Petch R, Linton CJ, Palmer MD, Bridge PD, Johnson EM. Candida nivariensis, an emerging pathogenic fungus with multidrug resistance to antifungal agents. J Clin Microbiol. 2008;46:933–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Bishop JA, Chase N, Magill SS, Kurtzman CP, Fiandaca MJ, Merz WG. Candida bracarensis detected among isolates of Candida glabrata by peptide nucleic acid fluorescence in situ hybridization: susceptibility data and documentation of presumed infection. J Clin Microbiol. 2008;46:443–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Linton CJ, Borman AM, Cheung G, Holmes AD, Szekely A, Palmer MD, Bridge PD, Campbell CK, Johnson EM. Molecular identification of unusual pathogenic yeast isolates by Large Ribosomal Subunit gene sequencing: 2 years experience at the UK Mycology Reference Laboratory. J Clin Microbiol. 2007;45:1152–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Freydiere AM, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Med Mycol. 2001;39:9–33.PubMedGoogle Scholar
  19. 19.
    Kirdar S, Gültekin B, Evcil G, Ozkütük A, Aydin N. Evaluation of a rapid trehalase test for the identification of Candida glabrata. Mikrobiyol Bul. 2009;43:303–7.PubMedGoogle Scholar
  20. 20.
    Willinger B, Wein S, Hirschl AM, Rotter ML, Manafi M. Comparison of a new commercial test, GLABRATA RTT, with a dipstick test for rapid identification of Candida glabrata. J Clin Microbiol. 2005;43:499–501.PubMedCrossRefGoogle Scholar
  21. 21.
    Freydiere AM, Perry JD, Faure O, Willinger B, Tortorano AM, Nicholson A, Peman J, Verweij PE. Routine use of a commercial test, GLABRATA RTT, for rapid identification of Candida glabrata in six laboratories. J Clin Microbiol. 2004;42:4870–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Freydiere AM, Robert R, Ploton C, Marot-Leblond A, Monerau F, Vandenesch F. Rapid identification of Candida glabrata with a new commercial test, GLABRATA RTT. J Clin Microbiol. 2003;41:3861–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Peltroche-Llacsahuanga H, Schnitzler N, Lütticken R, Haase G. Rapid identification of Candida glabrata by using a dipstick to detect trehalase-generated glucose. J Clin Microbiol. 1999;37:202–5.PubMedGoogle Scholar
  24. 24.
    Piens MA, Perry JD, Raberin H, Parant F, Freydière AM. Routine use of a one minute trehalase and maltase test for the identification of Candida glabrata in four laboratories. J Clin Pathol. 2003;56:687–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Parant F, Freydiere AM, Gille Y, Boiron P, Odds FC. A “one minute” trehalase detection test for the identification of Candida glabrata. J Mycol Med. 2001;11:26–31.Google Scholar
  26. 26.
    Montero CI, Shea YR, Jones PA, Harrington SM, Tooke NE, Witebsky FG, Murray PR. Evaluation of Pyrosequencing technology for the identification of clinically relevant non-dematiaceous yeasts and related species. Eur J Clin Microbiol Infect Dis. 2008;27:821–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Borman AM, Linton CJ, Oliver D, Palmer MD, Szekely A, Johnson EM. Rapid molecular identification of pathogenic yeast species by Pyrosequencing® analysis of 35 nucleotides of the Internal Transcribed Spacer 2. J Clin Microbiol. 2010;48:3648–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol. 2009;47:2912–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Quiles-Melero I, García-Rodríguez J, Gómez-López A, Mingorance J. Evaluation of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry for identification of Candida parapsilosis, C. orthopsilosis and C. metapsilosis. Eur J Clin Microbiol Infect Dis. 2012;31:67–71.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mark Fraser
    • 1
  • Andrew M. Borman
    • 1
  • Elizabeth M. Johnson
    • 1
  1. 1.UK National Mycology Reference Laboratory, Health Protection Agency South WestBristolUK

Personalised recommendations