Skip to main content

Advertisement

Log in

Differential Phytate Utilization in Candida species

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate and characterize the phytase activity in different Candida species. A total of 113 Candida isolates representing eight species were examined for phytase activity by an agar plate assay using the calcium salt of phytic acid as the sole phosphorus source. A phytase-positive phenotype was identified by the formation of a clear halo around a fungal colony. Cell-bound differential phytase activity was observed in Candida isolates at inter- and intra-species levels. Although phytase activity was not affected by the supplementation of external phosphate in C. albicans, C. dubliniensis, C. glabrata, and C. kefyr, elevated phytase activity was evident in C. guilliermondii, C. krusei, C. parapsilosis, and C. tropicalis in phosphate-free medium. Further characterization showed that, in general, relatively higher phytase activity was observed at more acidic pHs, and the phytase activity increased with incubation temperature, reaching a maximum at 55 or 65°C. Taken together, the findings demonstrated, for the first time, differential phytase activities in different Candida species. Phytase activity may be a contributing factor to fungal survival and proliferation within the human gastrointestinal tract, where nutrients are usually scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50:243–60.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng MF, Yu KW, Tang RB, Fan YH, Yang YL, Hsieh KS, et al. Distribution and antifungal susceptibility of Candida species causing candidemia from 1996 to 1999. Diagn Microbiol Infect Dis. 2004;48:33–7.

    Article  PubMed  CAS  Google Scholar 

  3. Kang K, Wong KS, Seneviratne CJ, Samaranayake LP, Fong WP, Tsang PWK. In vitro synergistic effects of metergoline and antifungal agents against Candida krusei. Mycoses. 2010;53:495–9.

    Article  PubMed  CAS  Google Scholar 

  4. Odds FC. Candida species and virulence. ASM News. 1994;60:313–8.

    Google Scholar 

  5. Corner BE, Magee PT. Candida pathogenicity: unraveling the threads of infection. Curr Biol. 1997;7:R691–4.

    Article  PubMed  CAS  Google Scholar 

  6. Soll DR. Why does Candida albicans switch? FEMS Yeast Res. 2009;9:973–89.

    Article  PubMed  CAS  Google Scholar 

  7. Alby K, Bennett RJ. To switch or not switch? Phenotypic switching is sensitive to multiple inputs in a pathogenic fungus. Commun Integr Biol. 2009;2:509–11.

    Article  PubMed  Google Scholar 

  8. Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell. 2009;8:1750–8.

    Article  PubMed  CAS  Google Scholar 

  9. Kumamoto CA, Vinces MD. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell Microbiol. 2005;7:1546–54.

    Article  PubMed  CAS  Google Scholar 

  10. Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP. Adherence mechanisms in human pathogenic fungi. Med Mycol. 2008;46:749–72.

    Article  PubMed  CAS  Google Scholar 

  11. Biasoli MS, Tosello ME, Luque AG, Magaró HM. Adherence, colonization and dissemination of Candida dubliniensis and other Candida species. Med Mycol. 2010;48:291–7.

    Article  PubMed  Google Scholar 

  12. Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48:365–77.

    Article  PubMed  CAS  Google Scholar 

  13. Bramono K, Yamazaki M, Tsuboi R, Ogawa H. Comparison of proteinase, lipase and alpha-glucosidase activities from the clinical isolates of Candida species. Jpn J Infect Dis. 2006;59:73–6.

    PubMed  CAS  Google Scholar 

  14. Ma L, Xie L, Dong X, Shi W. Role of extracellular phospholipase B of Candida albicans as a virulent factor in experimental keratomycosis. Curr Eye Res. 2009;34:761–8.

    Article  PubMed  CAS  Google Scholar 

  15. Gokce G, Cerikcioglu N, Yagci A. Acid proteinase, phospholipase, and biofilm production of Candida species isolated from blood cultures. Mycopathologia. 2007;164:265–9.

    Article  PubMed  CAS  Google Scholar 

  16. Trinel PA, Plancke Y, Gerold P, Jouault T, Delplace F, Schwarz RT, et al. The Candida albicans phospholipomannan is a family of glycolipids presenting phosphoinositolmannosides with long linear chains of β-1,2-linked mannose residues. J Biol Chem. 1999;274:30520–6.

    Article  PubMed  CAS  Google Scholar 

  17. Reynolds TB. Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: making it and taking it. Microbiology. 2009;155:1386–96.

    Article  PubMed  CAS  Google Scholar 

  18. Lei XG, Porres JM. Phytase enzymology, applications, and biotechnology. Biotechnol Lett. 2003;25:1787–94.

    Article  PubMed  CAS  Google Scholar 

  19. Afinah S, Yazid AM, Anis Shobirin MH, Shuhaimi M. Phytase: application in food industry. Int Food Res J. 2010;17:13–21.

    Google Scholar 

  20. Konietzny U, Greiner R. Molecular and catalytic properties of phytate-degrading enzymes (phytases). Int J Food Sci Technol. 2002;37:791–812.

    Article  CAS  Google Scholar 

  21. Rao DECS, Rao KV, Reddy TP, Reddy VD. Molecular characterization, physicochemical properties, known and potential applications of phytases: an overview. Crit Rev Biotechnol. 2009;29:182–98.

    Article  PubMed  CAS  Google Scholar 

  22. Lambrechts C, Boze H, Moulin G, Galzy P. Utilization of phytate by some yeasts. Biotechnol Lett. 1992;14:61–6.

    Article  CAS  Google Scholar 

  23. Nakamura Y, Fukuhara H, Sano K. Secreted yeast activities of yeasts. Biosci Biotechnol Biochem. 2000;64:841–4.

    Article  PubMed  CAS  Google Scholar 

  24. DeAngelis M, Gallo G, Corbo MR, McSweeney PL, Faccia M, Giovine M, et al. Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol. 2003;87:259–70.

    Article  CAS  Google Scholar 

  25. Haros M, Bielecka M, Honke J, Sanz Y. Myo-inositol hexakisphosphate degradation by Bifidobacterium infantis ATCC 15697. Int J Food Microbiol. 2007;117:76–84.

    Article  PubMed  CAS  Google Scholar 

  26. Olstorpe M, Schnürer J, Passoth V. Screening of yeast strains for phytase activity. FEMS Yeast Res. 2009;9:478–88.

    Article  PubMed  CAS  Google Scholar 

  27. Hellström AM, Vázques-Juárez R, Svanberg U, Andlid TA. Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa. Int J Food Microbiol. 2010;136:352–8.

    Article  PubMed  Google Scholar 

  28. Quan CS, Fan SD, Zhang LH, Wang YJ, Ohta Y. Purification and properties of a phytase from Candida krusei WZ-001. J Biosci Bioeng. 2002;94:419–25.

    PubMed  CAS  Google Scholar 

  29. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJ, Gow NA, et al. Property differences among the four major Candida albicans strain clades. Eukaryot Cell. 2009;8:373–87.

    Article  PubMed  CAS  Google Scholar 

  30. Haros M, Bielecka M, Sanz Y. Phytase activity as a novel metabolic feature in Bifidobacterium. FEMS Microbiol Lett. 2005;247:231–9.

    Article  PubMed  CAS  Google Scholar 

  31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  32. Anil S, Samaranayake LP. Brief exposure to antimycotics reduces the extracellular phospholipase activity of Candida albicans and Candida tropicalis. Chemotherapy. 2003;49:243–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kadir T, Gümrü B, Uygun-Can B. Phospholipase activity of Candida albicans isolates from patients with denture stomatitis: the influence of chlorhexidine gluconate on phospholipase production. Arch Oral Biol. 2007;52:691–6.

    Article  PubMed  CAS  Google Scholar 

  34. Galán-Ladero MA, Blanco MT, Sacristán B, Fernández-Calderón MC, Pérez-Giraldo C, Gómez-García AC. Enzymatic activities of Candida tropicalis isolated from hospitalized patients. Med Mycol. 2010;48:207–10.

    Article  PubMed  Google Scholar 

  35. Luo G, Samaranayake LP, Yau JYY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol. 2001;39:2971–4.

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues AG, Pina-Vaz C, Costa-de-Oliveira S, Tavares C. Expression of plasma coagulase among pathogenic Candida species. J Clin Microbiol. 2003;41:5792–3.

    Article  PubMed  CAS  Google Scholar 

  37. Bethea EK, Carver BJ, Montedonico AE, Reynolds TB. The inositol regulon controls viability in Candida glabrata. Microbiology. 2010;156:452–62.

    Article  PubMed  CAS  Google Scholar 

  38. Chen YL, Kauffman S, Reynolds TB. Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun. 2008;76:2793–801.

    Article  PubMed  CAS  Google Scholar 

  39. Mukesh P, Suma S, Singaracharya MA, Lakshmipathi V. Isolation of phytate hydrolyzing microbial strains from traditional waste water of rice fermentation and liquid cattle feeds. World J Microbiol Biotechnol. 2004;20:531–4.

    Article  CAS  Google Scholar 

  40. Tseng YH, Fang TJ, Tseng SM. Isolation and characterization of novel phytase from Penicillium simplicissimum. Folia Microbiol (Praha). 1994;45:121–7.

    Article  Google Scholar 

  41. Lamping E, Ranchod A, Nakamura K, Tyndall JD, Niimi K, Holmes AR, et al. Abc1p is a multidrug efflux transporter that tips the balance in favor of innate azole resistance in Candida krusei. Antimicrob Agents Chermother. 2009;53:354–69.

    Article  CAS  Google Scholar 

  42. Odds FC, Hierholzer JC. Purification and properties of a glycoprotein acid phosphatase from Candida albicans. J Bacteriol. 1973;114:257–66.

    PubMed  CAS  Google Scholar 

  43. Li X, Liu Z, Chi Z, Li J, Wang X. Molecular cloning, characterization, and expression of the phytase gene from marine yeast Kodamaea ohmeri BG3. Mycol Res. 2009;113:24–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the Seed Funding Programme for Basic Research from the University of Hong Kong (Project No. 201003159008). The author thanks Prof. L. P. Samaranayake (The University of Hong Kong) for providing some of the Candida strains, Dr. Trevor Lane for editorial assistance, and Mrs. P. W. Y. Ho for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Wai-Kei Tsang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, P.WK. Differential Phytate Utilization in Candida species. Mycopathologia 172, 473–479 (2011). https://doi.org/10.1007/s11046-011-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9453-3

Keywords

Navigation