Skip to main content
Log in

Experimental Chemotherapy in Paracoccidioidomycosis Using Ruthenium NO Donor

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Paracoccidioidomycosis (PCM) is a granulomatous disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb). To determine the influence of nitric oxide (NO) on this disease, we tested cis-[Ru(bpy)2(NO)SO3](PF6), ruthenium nitrosyl, which releases NO when activated by biological reducing agents, in BALB/c mice infected intravenously with Pb 18 isolate. In a previous study by our group, the fungicidal activity of ruthenium nitrosyl was evaluated in a mouse model of acute PCM, by measuring the immune cellular response (DTH), histopathological characteristics of the granulomatous lesions (and numbers), cytokines, and NO production. We found that cis-[Ru(bpy)2(NO)SO3](PF6)-treated mice were more resistant to infection, since they exhibited higher survival when compared with the control group. Furthermore, we observed a decreased influx of inflammatory cells in the lung and liver tissue of treated mice, possibly because of a minor reduction in fungal cell numbers. Moreover, an increased production of IL-10 and a decrease in TNF-α levels were detected in lung tissues of infected mice treated with cis-[Ru(bpy)2(NO)SO3](PF6). Immunohistochemistry showed that there was no difference in the number of VEGF- expressing cells. The animals treated with cis-[Ru(bpy)2(NO)SO3](PF6) showed high NO levels at 40 days after infection. These results show that NO is effectively involved in the mechanism that regulates the immune response in lung of Pb-infected mice. These data suggest that NO is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, influencing cytokine production, and consequently moderating the development of a strong inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Restrepo A, Tobo′n AM. Paracoccidioides brasilensis. In: Mandell GL, Bennet JE, Dollin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 3062–8.

    Google Scholar 

  2. Borges-Walmsley MI, Chen D, Shu X, Walmsley AR. The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol. 2002;10:80–7.

    Article  PubMed  CAS  Google Scholar 

  3. Mamoni RL, Blotta MHSL. Kinetics of cytokines and chemokines gene expression distinguishes Paracoccidioides brasiliensis infection from disease. Cytokine. 2005;32:20–9.

    Article  PubMed  CAS  Google Scholar 

  4. Pulendran B. Modulating Th1/Th2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res. 2004;29:187–96.

    Article  PubMed  CAS  Google Scholar 

  5. Corthay A. A three-cell model for activation of naïve T helper cells. Scand J Immunol. 2006;64:93–6.

    Article  PubMed  CAS  Google Scholar 

  6. Gonzalez A, De Gregori W, Velez D, Restrepo A, Cano LE. Nitric oxide participation in the fungicidal mechanism of interferon-activated murine macrophages against Paracoccidioides brasiliensis conidia. Infect Immun. 2000;68:2546–52.

    Article  PubMed  CAS  Google Scholar 

  7. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie Q, Sokol K, Hutchinson N, Chen H, Mudgett JS. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995;81:641.

    Article  PubMed  CAS  Google Scholar 

  8. Liew FY, Millot S, Parkinson C, Palmer RMJ, Moncada S. Macrophage killing of Leishmania parasitic in vivo is mediated by nitric oxide from l-arginine. J Immunol. 1990;144:4794–7.

    PubMed  CAS  Google Scholar 

  9. James SL, Glaven J. Macrophage citotoxicity against schistosomula of Schistosoma mansoni involved arginine-dependent production of reactive nitrogen intermediates. J Immunol. 1989;143:4208–12.

    PubMed  CAS  Google Scholar 

  10. Lane TE, Otero GC, Wa-Hsieh B, Howard D. Expression of inducible nitric oxide synthase by stimulated macrophages correlates with their antihistoplasma activity. Infect Immun. 1994;62:1940–5.

    PubMed  CAS  Google Scholar 

  11. Bocca AL, Hayashi EE, Pinheiro AG, Furlanetto AB, Campanelli AP, Cunha FQ, Figueiredo F. Treatment of Paracoccidioides brasiliensis-infected mice with a nitric oxide inhibitor prevents the failure of cell-mediated immune response. J Immunol. 1998;161:3056.

    PubMed  CAS  Google Scholar 

  12. Nascimento FRF, Calich VLG, Rodríguez D, Russo M. Dual role for nitric oxide in paracoccidioidomycosis: essential for resistance, but overproduction associated with susceptibility. J Immunol. 2002;168:4593–600.

    PubMed  CAS  Google Scholar 

  13. Bogdan C. Nitric oxide and the immune response. Nat Immun. 2001;10:907–16.

    Article  Google Scholar 

  14. Zanichelli PG, Sernaglia RL, Franco DW. Immobilization of the [RuII(edta)NO+] íon on surface of functionalized sílica gel. Langmuir. 2006;22:203–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sánchez-Delgado RA, Navarro M, Lazardi K, Atencio R, Capparelli M, Vargas F, Urbina JA, Bouillez A, Noels AF, Mais D. Toward a novel metal-based chemotherapy against tropical diseases. Part 4. Synthesis and characterization of new metal–clotrimazole complexes and evaluation of their activity against trypanosoma cruzi. Inorg Chim Acta. 1998;39:528–540.

    Google Scholar 

  16. Navarro MT, Lahmann EJ, Cisneros-Fajardo A, Fuentes RA, Sánchez-Delgado P, Silva JA. Toward a novel metal-based chemotherapy against tropical diseases. Part 5. Synthesis and characterization of new Ru(II) and Ru(III) clotrimazole and ketoconazole complexes and evaluation of their activity against trypanosoma cruzi polyhedron. 2000;19:2319–2325.

  17. Sanchez-Delgado RA, Anzellotti A. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis mini. Rev Med Chem. 2004;4:23–30.

    Article  CAS  Google Scholar 

  18. Tfouni E, Krieger M, McGarvey B, Franco DW. Structure, chemical and photochemical reactivity and biological activity of some ruthenium nitrosyl complexes. Coord Chem Rev. 2003;236:57–69.

    Article  CAS  Google Scholar 

  19. Silva JJN, Osakabe AL, Pavanelli WR, Silva JS, Franco DW. In vitro and in vivo antiproliferative and trypanocidal activities of ruthenium NO donors Br. J Pharmacol. 2007;152:112–21.

    CAS  Google Scholar 

  20. Calich VLG, Purchio A, Paulo CR. A new fluorescent viability test for fungi cells. Mycopathologia. 1979;66:175–7.

    Article  PubMed  CAS  Google Scholar 

  21. Souto JT, Figueiredo F, Furlanetto A, Pfeffer K, Rossi MA, Silva JS. IFN-γ and TNF-α determine resistance to Paracoccidioides brasiliensis infection in mice. Am J Pathol. 2000;156:811–1820.

    Article  Google Scholar 

  22. Perrin DD, Armarego WLF, Perrin DR. Purification of laboratory chemicals. Elmsford, USA: Pergamon Press; 1980.

    Google Scholar 

  23. Shriver DF. The manipulation of air-sensitive compound. McGraw-Hill: New York; 1969.

    Google Scholar 

  24. Borges SSS, Davanzo CU, Castellano EE, Z-Zchpector J, Silva SC, Franco DW. Ruthenium nitrosyl complexes with N-heterocyclic ligands. Inorg Chem. 1998;37:2670–7.

    Article  PubMed  CAS  Google Scholar 

  25. Cerecetto H, González M. Chemotherapy of Chagas’ disease: status and new development. Curr Top Med Chem. 2002;2:1187–213.

    Article  PubMed  CAS  Google Scholar 

  26. Clarke MJ. Electrochemistry, synthesis, and spectra of pentaammineruthenium(III) complexes of cytidine, adenosine, and related ligands. J Am Chem Soc. 1978;100:5068–75.

    Article  CAS  Google Scholar 

  27. Panis C, Mazzuco TL, Costa CZ, Victorino VJ, Tatakihara VL, Yamauchi LM, Yamada-Ogatta SF, Cecchini R, Rizzo LV, Pinge-Filho P. Trypanosoma cruzi: effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide and iNOS expression in cardiac tissue in the acute phase of infection in mice. Exp Parasitol. 2010. (In press).

  28. Mariano FS, Gutierrez FR, Pavanelli WR, Milanezi CM, Cavassani KA, Moreira AP, Ferreira BR, Cunha FQ, Cardoso CR, Silva JS. The involvement of CD4+CD25+ T cells in the acute phase of Trypanosoma cruzi infection. Microbes Infect. 2008;10:825–33.

    Article  PubMed  CAS  Google Scholar 

  29. Furuta T, Kimura M, Watanabe N. Elevated levels of vascular endothelial growth factor (VEGF) and soluble vascular endothelial growth factor receptor (VEGFR)-2 in human malaria. Am J Trop Med Hyg. 2010;82:136–9.

    Article  PubMed  Google Scholar 

  30. Vespa GNR, Cunha FQ, Silva JS. Nitric oxide is involved in control of Trypanosoma cruzi-induced parasitemia and directly kills the parasite in vitro. Infect Immun. 1994;62:5177.

    PubMed  CAS  Google Scholar 

  31. Wei X, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375:408.

    Article  PubMed  CAS  Google Scholar 

  32. Candolfi E, Hunter CA, Remington JS. Mitogen- and antigen-specific proliferation of T-cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates. Infect Immun. 1994;62:1995.

    PubMed  CAS  Google Scholar 

  33. Gregory SH, Wing EJ, Hoffman RA, Simmons RL. Reactive nitrogen intermediates suppress the primary immunologic response to Listeria. J Immunol. 1993;150:2901.

    PubMed  CAS  Google Scholar 

  34. Rockett KA, Auburu MM, Rockett EJ, Coride WB, Clark I. Possible role of nitric oxide in malarial immunosuppression. Parasite Immunol. 1994;16:243.

    Article  PubMed  CAS  Google Scholar 

  35. Teixeira HC, Calich VLG, Singer-Vermes LM, D’Império Lima MR, Russo M. Experimental paracoccidioidomycosis: early immunosuppression occurs in susceptible mice after infection with pathogenic fungi. Braz J Med Biol Res. 1987;20:587.

    PubMed  CAS  Google Scholar 

  36. Tonnetti L, Spaccapelo R, Cenci E, Mencacci A, Puccetti P, Coffman RL, Bistoni F, Romani L. Interleukin-4 and 10 exacerbate candidiasis in mice. Eur J Immunol. 1995;25:1559–65.

    Article  PubMed  CAS  Google Scholar 

  37. Del Sero G, Mencacci A, Cenci E, d’Ostiani CF, Montagnoli C, Bacci A, Mosci P, Kopf M, Romani L. Antifungal type 1 response are upregulated in IL-10-deficient mice. Microbes Infect. 1999;1:1169–80.

    Article  PubMed  CAS  Google Scholar 

  38. Vazquez-Torres J, Jones-Carson RD, Wagner T, Balish E. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun. 1999;67:670–4.

    PubMed  CAS  Google Scholar 

  39. Deepe GS, Gibbons RS. Protective and memory immunity to Histoplasma capsulatum in the absence of IL-10. J Immunol. 2003;171:5353–62.

    PubMed  CAS  Google Scholar 

  40. Fierer J, Walls L, Eckmann L, Yamamoto T, Kirkland TN. Importance of interleukin-10 in genetic susceptibility of mice to Coccidioides immitis. J Immunol. 1998;66:4397–402.

    CAS  Google Scholar 

  41. Ohba T, Haro H, Ando T, Wako M, Suenaga F, Aso Y, Koyama K, Hamada Y, Nako A. TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues. J Orthop Res. 2009;27(2):229–35.

    Article  PubMed  CAS  Google Scholar 

  42. Kim JE, Son JE, Jung SK, Kang NJ, Lee CY, Lee KW, Lee HJ. Cocoa polyphenols suppress TNF-alpha-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3 K) and mitogen-activated protein kinase-1 (MEK1) activities in mouse epidermal cells. Br J Nutr. 2010;16:1–8.

    CAS  Google Scholar 

  43. Zhen G, Xue Z, Zhao J, Gu N, Tang Z, Xu Y, Zhang Z. Mesenchymal stem cell transplantation increases expression of vascular endothelial growth factor in papain-induced emphysematous lungs and inhibits apoptosis of lung cells. Cytotherapy. 2010;29.

  44. Abbas AK, Lichtman AH. Citocinas, Imunologia celular e molecular. 5th ed. Brazil: Elsevier; 2005. p. 260–2. pp. 270, 276–278.

    Google Scholar 

  45. Guedes PM, Oliveira FS, Gutierrez FR, da Silva GK, Rodrigues GJ, Bendhack LM, Franco DW, Do Valle Matta MA, Zamboni DS, da Silva RS, Silva JS. Nitric oxide donor trans-[RuCl([15]aneN)NO] as a possible therapeutic approach for Chagas’ disease. Br J Pharmacol. 2010;160(2):270–82.

    Article  PubMed  CAS  Google Scholar 

  46. Hesse M, Modolell M, La Flamme AC, Schito M, Fuentes JM, Cheever AW, Pearce EJ, Wynn TA. Differential regulation of nitric oxide synthase-2 and arginase-1 by type 1/type 2 cytokines in vivo: granulomatous pathology is shaped by pattern of l-argininie metabolism. J Immunol. 2001;167:6533–44.

    PubMed  CAS  Google Scholar 

  47. Lousada S, Flórido M, Appelberg R. Regulation of granuloma fibrosis by nitric oxide during Mycobacterium avium experimental infection. Int J Exp Pathol. 2006;87:307–15.

    Article  PubMed  CAS  Google Scholar 

  48. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    Article  PubMed  CAS  Google Scholar 

  49. Brummer E. Interaction of Paracoccidioides brasiliensis with host defense cells. In: Franco M, Silva Lacaz C, Restrepo Moreno A, del Negro, editors. Paracoccidioidomycosis. Boca Raton: CRC Press; 1994. p. 213–223.

  50. Fricker SP. Ruthenium, nitric oxide and disease. Platinum Metal Rev. 1995;59:150–9.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Fundação Araucária/SETI-PR, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Special Program for Research and Training in Tropical Diseases (TDR/WHO). Dr. A. Leyva provided English editing of the manuscript.

Conflict of Interest

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wander Rogério Pavanelli.

Additional information

This paper is based on part of the post-doctoral work of WR Pavanelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavanelli, W.R., da Silva, J.J.N., Panis, C. et al. Experimental Chemotherapy in Paracoccidioidomycosis Using Ruthenium NO Donor. Mycopathologia 172, 95–107 (2011). https://doi.org/10.1007/s11046-011-9416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9416-8

Keywords

Navigation