, Volume 169, Issue 4, pp 269–278 | Cite as

Adhesive Properties and Hydrolytic Enzymes of Oral Candida albicans Strains

  • Emira Noumi
  • Mejdi Snoussi
  • Hajer Hentati
  • Kacem Mahdouani
  • Lucas del Castillo
  • Eulogio Valentin
  • Rafael Sentandreu
  • Amina Bakhrouf


Several virulence factors in Candida albicans strains such as production of hydrolytic enzymes and biofilm formation on surfaces and cells can contribute to their pathogenicity. For this, control of this opportunistic yeast is one of the factors reducing the nosocomial infection. The aim of this study was to investigate biofilm formation on polystyrene and polymethylmethacrylate and the production of hydrolytic enzymes in Candida albicans strains isolated from the oral cavity of patients suffering from denture stomatitis. All strains were identified by macroscopic, microscopic analysis and the ID 32 C system. Our results showed that 50% of the total strains produced phospholipase. Furthermore, protease activity was detected in seven (35%) strains. All Candida albicans strains were beta haemolytic. All C. albicans strains adhered to polystyrene 96-well microtiter plate at different degrees, and the metabolic activity of C. albicans biofilm formed on polymethylmethacrylate did not differ between tested strains. The atomic force micrographs demonstrated that biofilm of Candida albicans strains was organized in small colonies with budding cells.


Candida albicans Hydrolytic enzymes Biofilm Polymethylmethacrylate 



We gratefully acknowledge Prof. Stefania Zanetti (University of Sassari, Italy) for standard Candida albicans strains and Mr. Moez Abroud from the Centre de Recherche Technologique de Borj Cédria (Tunisia), for technical assistance with the AFM technique.


  1. 1.
    Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9:327–50.CrossRefPubMedGoogle Scholar
  2. 2.
    Nikawa H, Hamada T, Yamamoto T. Denture plaque-past and recent concerns. J Dent. 1998;26:299–304.CrossRefPubMedGoogle Scholar
  3. 3.
    Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species. Aust Dent J. 1998;43:160–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Budtz-Jorgensen E, Stenderup A, Grabowski M. An epidemiologic study of yeasts in elderly denture wearers. Community Dent Oral Epidemiol. 1975;3:115–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Ghannoum M. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.CrossRefPubMedGoogle Scholar
  7. 7.
    Neugnot V, Moulin G, Dubreucq E, Bigey F. The lipase/acyltransferase from Candida parapsilosis: molecular cloning and characterization of purified recombinant enzymes. Eur J Biochem. 2002;269:1734–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Ibrahim AS, Mirbod F, Filler SG. Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun. 1995;63:1993–8.PubMedGoogle Scholar
  9. 9.
    Stehr F, Kretschmar M, Kroger C, Hube B, Schafer W. Microbial lipases as virulence factor. J Mol Catal. 2003;22:347–55.CrossRefGoogle Scholar
  10. 10.
    Cassone A, De Bernardis F, Mondello F, Ceddia T, Agatensi L. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis. 1987;156:777–83.PubMedGoogle Scholar
  11. 11.
    Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbio. 2001;39:2971–4.CrossRefGoogle Scholar
  12. 12.
    Gristina AG, Giridhar G, Gabriel BL. Cell biology and molecular mechanisms in artificial device infections. Int J Artif Organs. 1993;16:755–63.PubMedGoogle Scholar
  13. 13.
    Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldmann DA, Pier GB. Pathogenesis of infections related to intravascular catheterization. Clin Microbiol Rev. 1993;6:176–92.PubMedGoogle Scholar
  15. 15.
    Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98:53–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Avon SL, Goulet JP, Deslauriers N. Removable acrylic resin disk as a sampling system for the study of denture biofilms in vivo. J Prosthet Dent. 2007;97:32–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Serrano-Granger R, Campo-Trapero J, Del Río-Highsmith J. In vitro study of the adherence of Candida albicans to acrylic resins: relationship to surface energy. Int J Prosthodont. 2005;18:392–8.PubMedGoogle Scholar
  18. 18.
    Moura JS, Silva WJ, Pereira T, Del Bel Cury AA, Rodrigues Garcia RC. Influence of acrylic resin polymerization methods and saliva on the adherence of four Candida species. J Prosthet Dent. 2006;96:205–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Pereira-Cenci T, Cury AA, Cenci MS, Rodrigues-Garcia RC. In vitro Candida colonization on acrylic resins and denture liners: influence of surface free energy, roughness, saliva, and adhering bacteria. Int J Prosthodont. 2007;20:308–10.PubMedGoogle Scholar
  20. 20.
    Busscher HJ, Cowan MM, van der Mei HC. On the relative importance of specific and non-specific approaches to oral microbial adhesion. FEMS Microbiol Rev. 1992;8:199–209.PubMedGoogle Scholar
  21. 21.
    Verheyen CC, Dhert WJ, De Blieck-Hogervorst JM, van der Reijden TJ, Petit PL, de Groot K. Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis. Biomaterials. 1993;14:383–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Waltimo T, Tanner J, Vallittu P, Haapasalo M. Adherence of Candida albicans to the surface of polymethylmethacrylate- E glass fiber composite used in dentures. Int J Prosthodont. 1999;12:83–6.PubMedGoogle Scholar
  23. 23.
    Baquero C, Montero M, Sentandreu R, Valentin E. Identification of Candida albicans by polymerase chain reaction amplification of a CaYST1 gene intron fragment. Rev Iberoam Micol. 2002;19:80–3.PubMedGoogle Scholar
  24. 24.
    Ausubel FM, Brent R, Kingston RE. Current protocols in molecular biology. New York, John Wiley and sons; 1996, 2:13.11.1–13.13.8.Google Scholar
  25. 25.
    Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14.PubMedGoogle Scholar
  26. 26.
    Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T. Comparative pathogenicity of wild-type strains and respiratory mutants of Candida albicans in mice. Zol Bakt. 1990;273:332–43.Google Scholar
  27. 27.
    Manns JM, Mosser DM, Buckley HR. Production of a hemolytic factor by Candida albicans. Infect Immun. 1994;62:5154–6.PubMedGoogle Scholar
  28. 28.
    Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70:878–88.CrossRefPubMedGoogle Scholar
  29. 29.
    Melo ASA, Padovan ACB, Serafim RC, Puzer L, Carmona AK, Juliano Neto L, et al. The Candida albicans AAA ATPase homologue of Saccharomyces cerevisiae Rix7p (YLL034c) is essential for proper morphology, biofilm formation and activity of secreted aspartylproteinases. Genet Mol Res. 2006;5:664–87.PubMedGoogle Scholar
  30. 30.
    Samaranayake LP, MacFarlane TW. An in vitro study of the adherence of Candida albicans to acrylic surfaces. Arch Oral Biol. 1980;25:603–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80:903–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Braga PC, Ricci D. Atomic force microscopy: application to investigation of Escherichia coli morphology before and after exposure to cefodizime. Antimicrob Agents Chemother. 1998;42:18–22.PubMedGoogle Scholar
  33. 33.
    Cardenes-Pereraa CD, Torres-Lanaab A, Alonso-Vargasc R, Moragues-Tosantasc MD, Ponton-San Emeterioc J, Quindos-Andres G, et al. Evaluation of API ID 32C® and VITEK-2® to identify Candida dubliniensis. Diag Microbiol and Infect Dis. 2004;50:219–21.CrossRefGoogle Scholar
  34. 34.
    Oliveira EE, Silva SC, Soares AJ, Attux C, Cruvinel B, Silva MRR, et al. Killer toxin and enzyme production by Candida albicans isolated from buccal mucosa in-patients with cancer. Rev Soc Bras Med Trop. 1998;31:523–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Samaranayake LP, Reaside JM, Macfarlane TW. Factors affecting the phospholipase activity of Candida species in vitro. J Med Veter Mycol. 1984;22:201–7.CrossRefGoogle Scholar
  36. 36.
    Bosco VL, Birman EG, Cury AE, Paula CR. Yeasts from the oral cavity of children with AIDS: exoenzyme production and antifungal resistance. Pesqui Odontol Bras. 2003;17:217–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Candido RC, Azevedo RVP, Komesu MC. Enzimotipagem de espécies de Candida isoladas da cavidade bucal. Rev Soc Bras Med Trop. 2000;33:437–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Kretchmar M, Hube B, Bertsch T, et al. Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun. 1999;67:6637–42.Google Scholar
  39. 39.
    Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans species and biofilms. J Med Microbiol. 1999;48:671–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 2004;49:789–98.CrossRefPubMedGoogle Scholar
  41. 41.
    Critchley IA, Douglas LJ. Differential adhesion of pathogenic Candida species to epithelial and inert surfaces. FEMS Microbiol Lett. 1985;28:199–203.CrossRefGoogle Scholar
  42. 42.
    Edgerton M, Scannapieco FA, Reddy MS, Levine MJ. Human submandibular-sublingual saliva promotes adhesion of Candida albicans to polymethylmethacrylate. Infect Immun. 1993;61:2644–52.PubMedGoogle Scholar
  43. 43.
    He XY, Meurman JH, Kari K, Rautemaa R, Samaranayake LP. In vitro adhesion of Candida species to denture base materials. Mycoses. 2006;49:80–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Biswas SK, Chaffin WL. Anaerobic growth of Candida albicans does not support biofilm formation under similar conditions used for aerobic biofilm. Curr Microbiol. 2005;51:100–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Bulad K, Taylor RL, Verran J, McCord JF. Colonization and penetration of denture soft lining materials by C. albicans. Dent Mat. 2004;20:167–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Emira Noumi
    • 1
    • 2
  • Mejdi Snoussi
    • 1
  • Hajer Hentati
    • 5
  • Kacem Mahdouani
    • 3
  • Lucas del Castillo
    • 4
  • Eulogio Valentin
    • 4
  • Rafael Sentandreu
    • 4
  • Amina Bakhrouf
    • 1
  1. 1.Laboratoire d’Analyse, Traitement et Valorisation des Polluants de l’Environnement et des ProduitsDépartement de Microbiologie, Faculté de PharmacieMonastirTunisie
  2. 2.Departamento de Microbiologia y Ecología, Facultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
  3. 3.Laboratoire de MicrobiologieHôpital Ebn El Jazzar de KairouanKairouanTunisie
  4. 4.Departamento de Microbiologia y Ecología, Facultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
  5. 5.Service de Médecine et Chirurgie BuccalesClinique Odontologique de MonastirMonastirTunisie

Personalised recommendations