, Volume 167, Issue 2, pp 95–105 | Cite as

Phylogenetic Studies of Gordonia Species Based on gyrB and secA1 Gene Analyses

  • Yingqian Kang
  • Kenjiro Takeda
  • Katsukiyo Yazawa
  • Yuzuru Mikami


Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.


Pathogenic actinomycetes Gordonia phylogeny gyrB gene secA1 gene 



This work was supported in part by National BioResource Project (NBRP) in Japan (


  1. 1.
    Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol. 1997;47:479–91.CrossRefGoogle Scholar
  2. 2.
    Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie Van Leeuwenhoek. 1998;74:3–20. doi: 10.1023/A:1001730725003.PubMedCrossRefGoogle Scholar
  3. 3.
    Goodfellow M, Isik K, Yates E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold. 1999;312:47–82.Google Scholar
  4. 4.
    Kageyama A, Iida S, Yazawa K, Kudo T, Suzuki S, Koga T, et al. Gordonia araii sp. nov. and Gordonia effusa sp. nov., isolated from patients in Japan. Int J Syst Evol Microbiol. 2006;56:1817–21. doi: 10.1099/ijs.0.64067-0.PubMedCrossRefGoogle Scholar
  5. 5.
    Iida S, Taniguchi H, Kageyama A, Yazawa K, Chibana H, Murata S, et al. Gordonia otitidis sp. nov. isolated from a patient with external otitis. Int J Syst Evol Microbiol. 2005;55:1871–76. doi: 10.1099/ijs.0.63282-0.PubMedCrossRefGoogle Scholar
  6. 6.
    Zelazny AM, Calhoun LB, Li L, Shea YR, Fischer SH. Identification of Mycobacterium species by secA1 sequences. J Clin Microbiol. 2005;43:1051–58. doi: 10.1128/JCM.43.3.1051-1058.2005.PubMedCrossRefGoogle Scholar
  7. 7.
    Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA, et al. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol. 2004;42:3711–30. doi: 10.1128/JCM.42.8.3711-3730.2004.PubMedCrossRefGoogle Scholar
  8. 8.
    Motoshima M, Yanagihara K, Fukushima K, Matsuda J, Sugahara K, Hirakata Y, et al. Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn Microbiol Infect Dis. 2007;58:53–8. doi: 10.1016/j.diagmicrobio.2006.11.007.PubMedCrossRefGoogle Scholar
  9. 9.
    Conville PS, Zelazny AM, Witebsky FG. Analysis of secA1 Gene Sequences for Identification of Nocardia Species. J Clin Microbiol. 2006;44:2760–66. doi: 10.1128/JCM.00155-06.PubMedCrossRefGoogle Scholar
  10. 10.
    Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol. 1995;61:1104–09.PubMedGoogle Scholar
  11. 11.
    Ishikawa J, Yamashita A, Mikami Y, Hoshino Y, Kurita H, Hotta K, et al. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc Natl Acad Sci USA. 2004;101:14925–30. doi: 10.1073/pnas.0406410101.PubMedCrossRefGoogle Scholar
  12. 12.
    Kageyama A, Torikoe K, Iwamoto M, Masuyama J, Shibuya Y, Okazaki H, et al. Nocardia arthritidis sp. nov., a new pathogen isolated from a patient with rheumatoid arthritis in Japan. J Clin Microbiol. 2004;42:2366–71. doi: 10.1128/JCM.42.6.2366-2371.2004.PubMedCrossRefGoogle Scholar
  13. 13.
    Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. doi: 10.1093/nar/22.22.4673.PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:150–63. doi: 10.1093/bib/5.2.150.PubMedCrossRefGoogle Scholar
  15. 15.
    Saitu N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.Google Scholar
  16. 16.
    Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. doi: 10.1007/BF01731581.PubMedCrossRefGoogle Scholar
  17. 17.
    Shen FT, Goodfellow M, Jones AL, Chen YP, Arun AB, Lai WA, et al. Gordonia soli sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol. 2006;56:2597–601. doi: 10.1099/ijs.0.64492-0.PubMedCrossRefGoogle Scholar
  18. 18.
    Shen FT, Lu HL, Lin JL, Huang WS, Arum AB, Young CC. Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res Microbiol. 2006;157:367–75. doi: 10.1016/j.resmic.2005.09.007.PubMedCrossRefGoogle Scholar
  19. 19.
    Hanafy A, Kaochroen S, Jover-Botella A, Katsu M, Iida S, Kogure T, Gonoi T, Mikami Y, Meyer W. Multilocus microsatellite typing for Cryptococcus neoformans var. grubii. Med Mycol. 2008; 46: in press.Google Scholar
  20. 20.
    Cruickshank RH. Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol. 2002;7:3–14.Google Scholar
  21. 21.
    Schmidt MG, Kiser KB. SecA: the ubiquitous component of preprotein translocase in prokaryotes. Microbes Infect. 1999;1:993–1004. doi: 10.1016/S1286-4579(99)80517-6.PubMedCrossRefGoogle Scholar
  22. 22.
    de Miguel T, Sieiro C, Poza M, Villa TG. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int Microbiol. 2000;3(2):107–11.PubMedGoogle Scholar
  23. 23.
    Nhung PH, Shah MM, Ohkusu K, Noda M, Hata H, Sun XS, et al. The dnaJ gene as a novel phylogenetic marker for identification of Vibrio species. Syst Appl Microbiol. 2007;30:309–15. doi: 10.1016/j.syapm.2006.11.004.PubMedCrossRefGoogle Scholar
  24. 24.
    Nhung PH, Hata H, Ohkusu K, Noda M, Shah MM, Goto K, et al. Use of the novel phylogenetic marker dnaJ and DNA-DNA hybridization to clarify interrelationships within the genus Aeromonas. Int J Syst Evol Microbiol. 2007;57:1232–37. doi: 10.1099/ijs.0.64957-0.PubMedCrossRefGoogle Scholar
  25. 25.
    Nhung PH, Ohkusu K, Mishima N, Noda M, Shah MM, Sun X, et al. Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Microbiol Infect Dis. 2007;58:153–61. doi: 10.1016/j.diagmicrobio.2006.12.019.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Yingqian Kang
    • 1
  • Kenjiro Takeda
    • 1
  • Katsukiyo Yazawa
    • 1
  • Yuzuru Mikami
    • 1
  1. 1.Medical Mycology Research Center (MMRC)Chiba UniversityChuo-ku, ChibaJapan

Personalised recommendations