Skip to main content
Log in

Monitoring ALS1 and ALS3 Gene Expression During In Vitro Candida albicans Biofilm Formation Under Continuous Flow Conditions

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

ALS1 and ALS3 encode cell-surface associated glycoproteins that are considered to be important for Candida albicans biofilm formation. The main goal of the present study was to monitor ALS1 and ALS3 gene expression during C. albicans biofilm formation (on silicone) under continuous flow conditions, using the Centers for Disease Control biofilm reactor (CDC reactor). For ALS1, we found few changes in gene expression until later stages of biofilm formation (72 and 96 h) when this gene appeared to be downregulated relative to the gene expression level in the start culture. We observed an induction of ALS3 gene expression in the initial stages of biofilm formation (0.5, 1, and 6 h), whereas at later stages, this gene was also downregulated relative to the gene expression level in the start culture. We also found that biofilms of an als3/als3 deletion mutant contained less filaments at several time points (1, 6, 24, and 48 h), although filamentation as such was not affected in this strain. Together, our data indicate an important role for ALS3 in the early phases of biofilm formation in the CDC reactor, probably related to adhesion of filaments, while the role of ALS1 is less clear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 2003;11:30–6. doi:10.1016/S0966-842X(02)00002-1.

    Article  PubMed  CAS  Google Scholar 

  2. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004;17:255–67. doi:10.1128/CMR.17.2.255-267.2004.

    Article  PubMed  Google Scholar 

  3. Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5:608–11. doi:10.1016/S1369-5274(02)00371-5.

    Article  PubMed  CAS  Google Scholar 

  4. Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8:1382–91. doi:10.1111/j.1462-5822.2006.00761.x.

    Article  PubMed  CAS  Google Scholar 

  5. Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. 1999;48:671–9.

    PubMed  CAS  Google Scholar 

  6. López-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol. 2005;15:R453–5. doi:10.1016/j.cub.2005.06.020.

    Article  PubMed  CAS  Google Scholar 

  7. Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.

    PubMed  CAS  Google Scholar 

  8. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol. 2001;183:5385–94. doi:10.1128/JB.183.18.5385-5394.2001.

    Article  PubMed  CAS  Google Scholar 

  9. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72:6023–31. doi:10.1128/IAI.72.10.6023-6031.2004.

    Article  PubMed  CAS  Google Scholar 

  10. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2:e63. doi:10.1371/journal.ppat.0020063.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology. 2006;152:2287–99. doi:10.1099/mic.0.28959-0.

    Article  PubMed  CAS  Google Scholar 

  12. Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol. 2001;9:176–80. doi:10.1016/S0966-842X(01)01984-9.

    Article  PubMed  CAS  Google Scholar 

  13. Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol. 2007;20:1–15.

    Google Scholar 

  14. García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 2004;3:536–45. doi:10.1128/EC.3.2.536-545.2004.

    Article  PubMed  CAS  Google Scholar 

  15. O’Connor L, Lahiff S, Casey F, Glennon M, Cormican M, Maher M. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol Cell Probes. 2005;19:153–62. doi:10.1016/j.mcp. 2004.10.007.

    Article  PubMed  CAS  Google Scholar 

  16. Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006;7:25. doi:10.1186/1471-2199-7-25.

    Article  PubMed  CAS  Google Scholar 

  17. Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X, Rodriguez-Zas SL, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153:2373–85. doi:10.1099/mic.0.2007/006163-0.

    Article  PubMed  CAS  Google Scholar 

  18. Green CB, Zhao X, Yeater KM, Hoyer LL. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology. 2005;151:1051–60. doi:10.1099/mic.0.27696-0.

    Article  PubMed  CAS  Google Scholar 

  19. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80:903–8.

    Article  PubMed  CAS  Google Scholar 

  20. Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70:878–88. doi:10.1128/IAI.70.2.878-888.2002.

    Article  PubMed  CAS  Google Scholar 

  21. Nickel JC, Wright JB, Ruseska I, Marrie TJ, Whitfield C, Costerton JW. Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. Eur J Clin Microbiol. 1985;4:213–8. doi:10.1007/BF02013600.

    Article  PubMed  CAS  Google Scholar 

  22. Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, et al. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol. 2004;70:4980–8. doi:10.1128/AEM.70.8.4980-4988.2004.

    Article  PubMed  CAS  Google Scholar 

  23. Honraet K, Goetghebeur E, Nelis HJ. Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods. 2005;63:287–95. doi:10.1016/j.mimet.2005.03.014.

    Article  PubMed  CAS  Google Scholar 

  24. Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol. 2002;44:61–72. doi:10.1046/j.1365-2958.2002.02873.x.

    Article  PubMed  CAS  Google Scholar 

  25. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.

    Google Scholar 

  26. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209. doi:10.1146/annurev.micro.56.012302.160705.

    Article  PubMed  CAS  Google Scholar 

  27. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. doi:10.1038/nrmicro821.

    Article  PubMed  CAS  Google Scholar 

  28. Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell. 2005;4:1562–73. doi:10.1128/EC.4.9.1562-1573.2005.

    Article  PubMed  CAS  Google Scholar 

  29. Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, et al. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell. 2007;6:682–692. doi:10.1128/EC.00340-06.

    Article  PubMed  CAS  Google Scholar 

  30. Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet. 1998;33:451–459. doi:10.1007/s002940050359.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology. 2004;150:2415–2428. doi:10.1099/mic.0.26943-0.

    Article  PubMed  CAS  Google Scholar 

  32. Coleman DA, Oh S, Zhao X, Hoyer LL. Dynamics of Als protein localization on the Candida albicans cell surface. In: Poster presentation on the 9th ASM conference on Candida and Candidiasis, Jersey City, New Jersey; 2008.

Download references

Acknowledgements

We wish to thank Aaron Mitchell and Alistair Brown for providing strains and acknowledge Andrea Cochis, Hanne Thuysbaert, Sofie Vandevivere and Kim De Rijck for excellent technical assistance and Jo Vandesompele for useful advice concerning qPCR data analysis. KT and TC acknowledge the support of the Fonds voor Wetenschappelijk Onderzoek (FWO). This work was partially funded by the Belgian Federation against Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Coenye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nailis, H., Vandenbroucke, R., Tilleman, K. et al. Monitoring ALS1 and ALS3 Gene Expression During In Vitro Candida albicans Biofilm Formation Under Continuous Flow Conditions. Mycopathologia 167, 9–17 (2009). https://doi.org/10.1007/s11046-008-9148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9148-6

Keywords

Navigation