, Volume 165, Issue 4–5, pp 259–273 | Cite as

Comparison of transcription of multiple genes during mycelia transition to yeast cells of Paracoccidioides brasiliensis reveals insights to fungal differentiation and pathogenesis

  • Juliana Alves Parente
  • Clayton Luiz Borges
  • Alexandre Melo Bailão
  • Maria Sueli S. Felipe
  • Maristela Pereira
  • Célia Maria de Almeida Soares


The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.


Dimorphic transition Induced transcripts Paracoccidioides brasiliensis Protein synthesis Protein folding/modification/ destination 

Supplementary material

11046_2007_9078_MOESM1_ESM.doc (174 kb)
DOC (174 kb)


  1. 1.
    Restrepo A, McEwen JG, Castaneda E. The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 2001;39:233–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Franco M, Lacaz C, Restrepo A, Del Negro G, editors. Paracoccidioidomycosis. Boca Ratón: CRC Press, 1994. p. 409.Google Scholar
  3. 3.
    San-Blas G, Ninõ-Vega G. Paracoccidioides brasiliensis: virulence and host response. In: Cihlar RL, Calderone RA, editors. Fungal pathogenesis: principles and clinical applications. New York: Marcel Dekker, 2001.Google Scholar
  4. 4.
    San-Blas G. The cell wall of fungal human pathogens: its possible role in host–parasite relationship. Mycopathologia 1982;79:159–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Andrade RV, Paes HC, Nicola AM, de Carvalho MJ, Fachin AL, Cardoso RS, Silva SS, Fernandes L, Silva SP, Donadi EA, Sakamoto-Hojo ET, Passos GA, Soares CMA, Brígido MM, Felipe MSS. Cell organization, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells. BMC Genomics 2006;7:208.PubMedCrossRefGoogle Scholar
  6. 6.
    Ferreira ME, Marques Edos R, Malavazi I, Torres I, Restrepo A, Nunes LR, de Oliveira RC, Goldman MH, Goldman GH. Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Mol Genet Genomics 2006;276:450–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Nunes LR, Costa de Oliveira R, Leite DB, da Silva VS, dos Reis Marques E, da Silva Ferreira ME, Ribeiro DC, de Souza Bernardes LA, Goldman MH, Puccia R, Travassos LR, Batista WL, Nobrega MP, Nobrega FG, Yang DY, de Bragança Pereira CA, Goldman GH. Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 2005;12: 2115–28.CrossRefGoogle Scholar
  8. 8.
    Paris S, Duran S. Cyclic adenosine 3′,5′ monophosphate (cAMP) and dimorphism in the pathogenic fungus Paracoccidioides brasiliensis. Mycopathologia 1985;92: 115–120.PubMedCrossRefGoogle Scholar
  9. 9.
    Chen D, Janganan TK, Chen G, Marques ER, Kress MR, Goldman GH, Walmsley AR, Borges-Walmsley MI. The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis. Mol Microbiol 2007;65: 761–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Da Silva SP, Felipe MSS, Pereira M, Azevedo MO, Soares CMA. Phase transition and stage-specific protein synthesis in the dimorphic fungus Paracoccidioides brasiliensis. Exp Mycol 1994;18:294–9.CrossRefGoogle Scholar
  11. 11.
    Salem-Izacc SM, Gomez FJ, Jesuino RSA, Fonseca CA, Felipe MSS, Deepe Jr GS, Soares CMA. Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis. Med Mycol 2001;39:445–55.CrossRefGoogle Scholar
  12. 12.
    Barbosa MS, Cunha Passos DA, Felipe MSS, Jesuíno RS, Pereira M, Soares CMA. The glyceraldehyde-3-phosphate dehydrogenase homologue is differentially regulated in phases of Paracoccidioides brasiliensis: molecular and phylogenetic analysis. Fungal Genet Biol 2004;41:667–75.PubMedCrossRefGoogle Scholar
  13. 13.
    Moreira SF, Bailão AM, Barbosa MS, Jesuino RS, Felipe MSS, Pereira M, Soares CMA. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis. Yeast 2004;21:173–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Da Silva SP, Borges-Walmsley MI, Pereira IS, Soares CMA, Walmsley AR, Felipe MSS. Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast phase of the human pathogenic fungus Paracoccidioides brasiliensis. Mol Microbiol 1999;31: 1039–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Nino-Vega G, Pérez-Silva C, San-Blas G. The actin gene in Paracoccidioides brasiliensis: organization, expression and phylogenetic analysis. Mycol Res 2007;111:363–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Felipe MSS, Andrade RV, Arraes FB, Nicola AM, Maranhão AQ, Torres FA, Silva-Pereira I, Poças-Fonseca MJ, Campos EG, Moraes LM, Andrade PA, Tavares AH, Silva SS, Kyaw CM, Souza DP, Pereira M, Jesuíno RS, Andrade EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF, Fachin AL, Cardoso RS, Passos GA, Almeida NF, Walter ME, Soares CMA, Carvalho MJ, Brígido MM. PbGenome network. Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 2005;280:24706–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Felipe MSS, Andrade RV, Petrofeza SS, Maranhao AQ, Torres FA, Albuquerque P, Arraes FB, Arruda M, Azevedo MO, Baptista AJ, Bataus LA, Borges CL, Campos EG, Cruz MR, Daher BS, Dantas A, Ferreira MA, Ghil GV, Jesuino RS, Kyaw CM, Leitao L, Martins CR, Moraes LM, Neves EO, Nicola AM, Alves ES, Parente JA, Pereira M, Pocas-Fonseca MJ, Resende R, Ribeiro BM, Saldanha RR, Santos SC, Silva-Pereira I, Silva MA, Silveira E, Simoes IC, Soares RB, Souza DP, De-Souza MT, Andrade EV, Xavier MA, Veiga HP, Venancio EJ, Carvalho MJ, Oliveira AG, Inoue MK, Almeida NF, Walter ME, Soares CMA, Brigido MM. Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 2003;20:263–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Goldman GH, dos Reis Marques E, Duarte Ribeiro DC, de Souza Bernardes LA, Quiapin AC, Vitorelli PM, Savoldi M, Semighini CP, de Oliveira RC, Nunes LR, Travassos LR, Puccia R, Batista WL, Ferreira LE, Moreira JC, Bogossian AP, Tekaia F, Nobrega MP, Nobrega FG, Goldman MH. Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot Cell 2003;2: 34–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Bailão AM, Shrank A, Borges CL, Parente JA, Dutra V, Felipe MSS, Fiúza RB, Pereira M, Soares CMA. The transcriptional profile of Paracoccidioides brasiliensis yeast cells is influenced by human plasma. FEMS Immunol Med Microbiol 2007;51:43–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Bailão AM, Schrank A, Borges CL, Dutra V, Molinari-Madlum EEWI, Felipe MSS, Mendes-Giannini MJS, Martins WS, Pereira M, Soares CMA. Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect 2006;8:2686–97.PubMedCrossRefGoogle Scholar
  21. 21.
    Bastos KP, Bailão AM, Borges CL, Faria FP, Felipe MSS, Silva MG, Martins WS, Fiuza RB, Pereira M, Soares CMA. The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiol 2007;7:29.PubMedCrossRefGoogle Scholar
  22. 22.
    Ahren D, Troein C, Johansson T, Tunlid A. Phorest: a web-based tool for comparative analyses of expressed sequence tag data. Mol Ecol Notes 2004;4:311–4.CrossRefGoogle Scholar
  23. 23.
    Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res 1997;7:986–95.PubMedGoogle Scholar
  24. 24.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.PubMedCrossRefGoogle Scholar
  25. 25.
    Finley D, Bartel B, Varshavsky A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 1989;338:394–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Kirthi N, Roy-Chaudhuri B, Kelley T, Culver GM. A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 2006;12:2080–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Guillier M, Allemand F, Graffe M, Raibaud S, Dardel F, Springer M, Chiaruttini C. The N-terminal extension of Escherichia coli ribosomal protein L20 is important for ribosome assembly, but dispensable for translational feedback control. RNA 2005;11:728–38.PubMedCrossRefGoogle Scholar
  28. 28.
    Naranda T, MacMillan SE, Donahue TF, Hershey JW. SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol Cell Biol 1996;16:2307–13.PubMedGoogle Scholar
  29. 29.
    Cui Y, Gonzalez CI, Kinzy TG, Dinman JD, Peltz SW. Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA 1999;5:794–804.PubMedCrossRefGoogle Scholar
  30. 30.
    Browne GJ, Proud CJ. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem 2002;269:5360–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Cardoso MA, Tambor JH, Nobrega FG. The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis. Yeast 2007;24:607–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Figueroa P, Gómez I, Carmona R, Holuigue L, Araya A, Jordana X. The gene for mitochondrial ribosomal protein S14 has been transferred to the nucleus in Arabidopsis thaliana. Mol Gen Genet 1999;262:139–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Fischer G, Tradler T, Zarnt T. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett 1998;426:17–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Sommer T, Jentsch S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 1993;365:176–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 1987;30:808–21.PubMedGoogle Scholar
  36. 36.
    Marques M, Mojzita D, Amorim MA, Almeida T, Hohmann S, Moradas-Ferreira P, Costa V. The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology 2006;152:3595–605.PubMedCrossRefGoogle Scholar
  37. 37.
    Wool IG, Chan YL, Glueck A. Mammalian ribosomes: the structure and the evolution of the proteins. In: Hershey JWB, Mathews MB, Sonenberg N, editors. Translational control. New York: Cold Spring Harbor Laboratory Press, 1996. p. 685–731.Google Scholar
  38. 38.
    Brosche M, Strid A. The mRNA-binding ribosomal protein S26 as a molecular marker in plants: molecular cloning, sequencing and differential gene expression during environmental stress. Biochim Biophys Acta 1999;1445:342–4.PubMedGoogle Scholar
  39. 39.
    Schaap D, Arts G, van Poppel NF, Vermeulen AN. De novo ribosome biosynthesis is transcriptionally regulated in Eimeria tenella, dependent on its life cycle stage. Mol Biochem Parasitol 2005;139:239–48.PubMedCrossRefGoogle Scholar
  40. 40.
    Marsh JA, Kalton HM, Gaber RF. Cns1 is an essential protein associated with the hsp90 chaperone complex in Saccharomyces cerevisiae that can restore cyclophilin 40-dependent functions in cpr7Delta cells. Mol Cell Biol 1998;18:7353–9.PubMedGoogle Scholar
  41. 41.
    Chen X, Sullivan DS, Huffaker TC. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci USA. 1994;91:9111–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Kainuma M, Ishida N, Yoko-o T, Yoshioka S, Takeuchi M, Kawakita M, Jigami Y. Coexpression of alpha1,2 galactosyltransferase and UDP-galactose transporter efficiently galactosylates N- and O-glycans in Saccharomyces cerevisiae. Glycobiology 1999;9:133–41.PubMedCrossRefGoogle Scholar
  43. 43.
    Munro CA, Bates S, Buurman ET, Hughes HB, Maccallum DM, Bertram G, Atrih A, Ferguson MA, Bain JM, Brand A, Hamilton S, Westwater C, Thomson LM, Brown AJ, Odds FC, Gow NA. Mnt1p and Mnt2p of Candida albicans are partially redundant alpha-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2005;280:1051–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Bates S, Hughes HB, Munro CA, Thomas WP, MacCallum DM, Bertram G, Atrih A, Ferguson MA, Brown AJ, Odds FC, Gow NA. Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. J Biol Chem 2006;281:90–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Vowels JJ, Payne GS. A role for the lumenal domain in Golgi localization of the Saccharomyces cerevisiae guanosine diphosphatase. Mol Biol Cell 1998;9:1351–65.PubMedGoogle Scholar
  46. 46.
    Tremmel D, Tropschug M. Neurospora crassa FKBP22 is a novel ER chaperone and functionally cooperates with BiP. J Mol Biol 2007;369:55–68.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang P, Cardenas ME, Cox GM, Perfect JR, Heitman J. Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep 2001;2:511–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Bell A, Monaghan P, Page AP. Peptidyl-prolyl cis–trans isomerases (immunophilins) and their roles in parasite biochemistry, host–parasite interaction and antiparasitic drug action. Int J Parasitol 2006;36:261–76.PubMedCrossRefGoogle Scholar
  49. 49.
    Swamy KH, Goldberg AL. E. coli contains eight soluble proteolytic activities, one being ATP dependent. Nature 1981;292:652–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Barros TF, Puccia R. Cloning and characterization of a LON gene homologue from the human pathogen Paracoccidioides brasiliensis. Yeast 2001;18:981–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Suarez MB, Vizcaino JA, Llobell A, Monte E. Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 2007;51:331–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Nakamura T, Abe H, Hirata A, Shimoda C. ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 2004;3:27–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Okamoto S, Ochi K. An essential GTP-binding protein functions as a regulator for differentiation in Streptomyces coelicolor. Mol Microbiol 1998;30:107–19.PubMedCrossRefGoogle Scholar
  54. 54.
    Joseph JD, Heitman J, Means AR. Molecular cloning and characterization of Aspergillus nidulans cyclophilin B. Fungal Genet Biol 1999;27:55–66.PubMedCrossRefGoogle Scholar
  55. 55.
    Jerka-Dziadosz M, Garreau de Loubresse N, Beisson J. Development of surface pattern during division in Paramecium. II. Defective spatial control in the mutant kin241. Development 1992;115:319–35.PubMedGoogle Scholar
  56. 56.
    Ren P, Rossettini A, Chaturvedi V, Hanes SD. The Ess1 prolyl isomerase is dispensable for growth but required for virulence in Cryptococcus neoformans. Microbiology 2005;151:1593–605.PubMedCrossRefGoogle Scholar
  57. 57.
    Köhler R, Fanghänel J, König B, Lüneberg E, Frosch M, Rahfeld JU, Hilgenfeld R, Fischer G, Hacker J, Steinert M. Biochemical and functional analyses of the Mip protein: influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila. Infect Immun 2003;71:4389–97.PubMedCrossRefGoogle Scholar
  58. 58.
    Kindrachuk J, Parent J, Davies GF, Dinsmore M, Attah-Poku S, Napper S. Overexpression of l-isoaspartate O-methyltransferase in Escherichia coli increases heat shock survival by a mechanism independent of methyltransferase activity. J Biol Chem 2003;278:50880–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Hiraishi H, Mochizuki M, Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Biosci Biotechnol Biochem 2006; 70:2762–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee JD, Kolattukudy PE. Molecular cloning of the cDNA and gene for an elastinolytic aspartic proteinase from Aspergillus fumigatus and evidence of its secretion by the fungus during invasion of the host lung. Infect Immun 1995;63:3796–803.PubMedGoogle Scholar
  61. 61.
    Su S, Stephens BB, Alexandre G, Farrand SK. Lon protease of the alpha-proteobacterium Agrobacterium tumefaciens is required for normal growth, cellular morphology and full virulence. Microbiology 2006;152:1197–207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Juliana Alves Parente
    • 1
  • Clayton Luiz Borges
    • 1
  • Alexandre Melo Bailão
    • 1
  • Maria Sueli S. Felipe
    • 2
  • Maristela Pereira
    • 1
  • Célia Maria de Almeida Soares
    • 1
  1. 1.Laboratório de Biologia Molecular, ICB II, Campus IIUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Laboratório de Biologia MolecularUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations