Advertisement

Mycopathologia

, Volume 166, Issue 1, pp 25–33 | Cite as

Fungicidal activity of human monocyte-derived multinucleated giant cells induced in vitro by Paracoccidioides brasiliensis antigen

  • Magda Paula Pereira do Nascimento
  • Angela Maria Victoriano de Campos Soares
  • Luciane Alarcão Dias-Melicio
  • Maria Rita Parise-Fortes
  • Rosana Aparecida Rodrigues Martins
  • Erika Takahashi Nakaira
  • Maria Terezinha Serrão Peraçoli
Article

Abstract

Multinucleated giant cells (MGC) are characteristic cells in granulomatous disorders such as paracoccidioidomycosis (PCM) and also are formed in vitro from peripheral blood mononuclear cells by several stimuli. In this study, the authors investigated in vitro formation of MGC derived from monocytes of healthy individuals, stimulated with Paracoccidioides brasiliensis antigen (PbAg), compared with other stimuli such as IFN-γ and supernatant of Con-A-stimulated peripheral blood mononuclear cells (CM-ConA). Besides, the fungicidal activity of monocytes and monocyte-derived MGC challenged with P. brasiliensis were compared, at a ratio of one fungus per 50 monocytes. Results demonstrated that PbAg, IFN-γ, and CM-ConA stimuli were able to induce MGC generation, with fusion indices significantly higher than control cultures. Striking results were observed when MGC induced by PbAg and IFN-γ presented higher fungicidal activity than monocytes, submitted to the same stimuli, showing a better capacity of these cells to kill P. brasiliensis. In summary, the results suggest that PbAg is able to induce MGC generation, and these cells presented higher fungicidal activity against P. brasiliensis than monocytes.

Keywords

Fungicidal activity Multinucleated giant cells Paracoccidioides brasiliensis Interferon-γ 

Abbreviations

BHI

Brain–heart infusion

CFU

Colony forming units

CM-ConA

Conditioned medium

Con-A

Concanavalina A

FGC

Foreign body giant cells

FI

Fusion index

GPY medium

Glucose, peptone, yeast extract and agar medium

IFN-γ

Interferon-γ

LGC

Langhans giant cells

MGC

Multinucleated giant cells

Mo

Monocytes

MoAb

Monoclonal antibody

PbAg

Paracoccidioides brasiliensis antigens

Pb18

Paracoccidioides brasiliensis strain 18

PBS-EDTA

Phosphate-buffered saline- ethylenediaminetetraacetic acid

RPMI 1640

Roswell Park Memorial Institute medium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Brito T, Franco MF. Granulomatous inflammation. Rev Inst Med Trop S Paulo 1994;36:185–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Gasser A, Most J. Generation of multinucleated giant cells␣in vitro by culture of human monocytes with Mycobacterium bovis BCG in combination with cytokine-containing supernatants. Infect Immun 1999;67:395–402.PubMedGoogle Scholar
  3. 3.
    Enelow RI, Sullivan GW, Carper HT, Mandell GL. Cytokine-induced human multinucleated giant cells have enhanced candidacidal activity and oxidative capacity compared with macrophages. J Infect Dis 1992;166:664–8.PubMedGoogle Scholar
  4. 4.
    Enelow RI, Sullivan GW, Carper HT, Mandell GL. Induction of multinucleated giant cell formation from in vitro culture of human monocytes with interleukin-3 and interferon-gamma: comparison with other stimulating factors. Am J Respir Cell Mol Biol 1992;6:57–62.PubMedGoogle Scholar
  5. 5.
    Anderson JM. Multinucleated giant cells. Curr Opin Hematol 2000;7:40–7.PubMedCrossRefGoogle Scholar
  6. 6.
    McInnes A, Rennick DM. Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J Exp Med 1988;167:598–611.PubMedCrossRefGoogle Scholar
  7. 7.
    Chensue SW, Terebuh PD, Warmington KS, Hershey SD, Evanoff HL, Kunkel SL, Higashi GI. Role of IL-4 and IFN-gamma in Schistosoma mansoni egg-induced hypersensitivity granuloma formation. Orchestration, relative contribution and relationship to macrophage function. J Immunol 1992;148:900–6.PubMedGoogle Scholar
  8. 8.
    Orentas RJ, Reinlib L, Hildreth JE. Anti-class II MHC antibody induces multinucleated giant cell formation from peripheral blood monocytes. J Leukoc Biol 1992;51:199–209.PubMedGoogle Scholar
  9. 9.
    Hassan NF, Kamani N, Meszaros MM, Douglas SD. Induction of multinucleated giant cell formation from human blood-derived monocytes by phorbol myristate acetate in vitro culture. J Immunol 1989;143:2179–84.PubMedGoogle Scholar
  10. 10.
    Kreipe H, Radzun HJ, Rudolph P, Barth J, Hansmann ML, Parwaresch MR. Multinucleated giant cells generated in vitro. Terminally differentiated macrophages with down-regulated c-fms expression. Am J Pathol 1988;130: 232–43.PubMedGoogle Scholar
  11. 11.
    Mizuno K, Okamoto H, Horio T. Heightened ability of monocytes from sarcoidosis patients to form multinucleated giant cells in vitro by supernatants of concanavalin A-stimulated mononuclear cells. Clin Exp Immunol 2001; 126:151–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Most J, Neumayer HP, Dierich MP. Cytokine-induced generation of multinucleated giant cells in vitro requires interferon-gamma and expression of LFA-1. Eur J Immunol 1990;20:1661–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Fais S, Burgio VL, Silvestri M, Capobianchi MR, Pacchiarotti A, Pallone F. Multinucleated giant cells generation induced by interferon-gamma. Changes in the expression and distribution of the intercellular adhesion molecule-1 during macrophages fusion and multinucleated giant cell formation. Lab Invest 1994;71:737–44.PubMedGoogle Scholar
  14. 14.
    Belosevic M, Finbloom DS, Van Der Meide PH, Slayter MV, Nacy CA. Administration of monoclonal anti-IFN-gamma antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 1989;143:266–74.PubMedGoogle Scholar
  15. 15.
    McNally AK, Anderson JM. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am J Pathol 1995;147:1487–99.PubMedGoogle Scholar
  16. 16.
    Franco M, Mendes RP, Moscardi-Bacchi M, Rezkallah-Iwasso MT, Montenegro MR. Paracoccidioidomycosis. Bailliere’s Clin Trop Med Comm Dis 1989;4:185–220.Google Scholar
  17. 17.
    Wanke B, Londero AT. Epidemiology and paracoccidioidomycosis infection. In: Franco M, Lacaz CS, Restrepo A, Del Negro G, editors. Paracoccidioidomycosis. Boca Raton: CRC Press; 1994. p.109–20.Google Scholar
  18. 18.
    Montenegro MR, Franco M. Pathology. In: Franco M, Lacaz CS, Restrepo A, Del Negro G, editors. Paracoccidioidomycosis. Boca Raton: CRC Press; 1994. p. 131–50.Google Scholar
  19. 19.
    Franco M, Peraçoli MT, Soares A, Montenegro R, Mendes RP, Meira DA. Host-parasite relationship in paracoccidioidomycosis. Curr Top Med Mycol 1993;5:115–49.PubMedGoogle Scholar
  20. 20.
    Moscardi-Bacchi M, Soares A, Mendes R, Marques S, Franco M. In situ localization of T lymphocyte subsets in human paracoccidioidomycosis. J Med Vet Mycol 1989; 27:149–58.PubMedCrossRefGoogle Scholar
  21. 21.
    Iabuki K, Montenegro MR. Experimental paracoccidioidomycosis in the Syrian hamster: Morphology, ultrastructure and correlation of lesions with presence of specific antigens and serum level of antibody. Mycopathologia 1979;67: 31–41.CrossRefGoogle Scholar
  22. 22.
    Parise-Fortes MR, Marques SA, Soares AM, Kurokawa CS, Marques ME, Peraçoli MT. Cytokines released from blood monocytes and expressed in mucocutaneous lesions of patients with paracoccidioidomycosis evaluated before and during trimethoprim-sulfamethoxazole treatment. Br J Dermatol 2006;154:643–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Peraçoli MTS, Sugizaki MF, Mendes RP, Naiff R, Montenegro MR. Paracoccidioides brasiliensis isolated from armadillos is virulent to syrian hamsters. Mycopathol 1999;148:123–30.CrossRefGoogle Scholar
  24. 24.
    Soares AM, Calvi SA, Peraçoli MT, Fernandez AC, Dias LA, Dos Anjos AR. Modulatory effect of prostaglandins on human monocyte activation for killing of high- and low-virulence strains of Paracoccidioides brasiliensis. Immunology 2001;102:480–5.PubMedCrossRefGoogle Scholar
  25. 25.
    Camargo ZP, Taborda CP, Rodrigues EG, Travassos LR. The use of cell-free antigens of Paracoccidioides brasiliensis in serological tests. J Med Vet Mycol 1991;29:31–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265–75.PubMedGoogle Scholar
  27. 27.
    Li CY, Lam KW, Yam LT. Esterases in human leukocytes. J Histochem Cytochem 1973;21:1–12.PubMedGoogle Scholar
  28. 28.
    Singer-Vermes LM, Ciavaglia MC, Casino SS, Burger E, Calich VLG. The source of the growth-promoting factor(s) affects the plating efficiency of Paracoccidioides brasiliensis. J Med Vet Mycol 1992;30:261–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Zar JH, ed. Biostatistical analysis. Englewood Cliffs: Prentice-Hall; 1984.Google Scholar
  30. 30.
    Godfrey K. Statistics in practice. Comparing the means of several groups. N Engl J Med 1985;313:1450–56.PubMedGoogle Scholar
  31. 31.
    Zhu XW, Friedland JS. Multinucleate giant cells and the control of chemokine secretion in response to Mycobacterium tuberculosis. Clin Immunol 2006;120:10–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Most J, Spotl L, Mayr G, Gasser A, Sarti A, Dierich MP. Formation of multinucleated giant cells in vitro is dependent on the stage of monocyte to macrophage maturation. Blood 1997;89:662–71.PubMedGoogle Scholar
  33. 33.
    Silva-Teixeira DN, Ferreira MG, Nogueira-Machado JA, Doughty BL, Goes AM. Human giant cell formation induced in vitro by Schistosoma mansoni antigens. Br J Med Biol Res 1993;26:609–13.Google Scholar
  34. 34.
    Camargo ZP, Taborda CP, Rodrigues EG, Travassos LR. The use of cell-free antigens of Paracoccidioides brasiliensis in serological tests. J Med Vet Mycol 1991;29:31–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Almeida SR, Unterkircher CS, Camargo ZP. Involvement of the major glycoprotein (gp43) of Paracoccidioides brasiliensis in attachment to macrophages. Med Mycol 1998;36:405–11.PubMedCrossRefGoogle Scholar
  36. 36.
    DeFife KM, Jenney CR, Colton E, Anderson JM. Disruption of filamentous actin inhibits human macrophage fusion. FASEB J 1999;13:823–32.PubMedGoogle Scholar
  37. 37.
    Calvi SA, Peraçoli MT, Mendes RP, Marcondes-Machado J, Fecchio D, Marques SA, Soares AM. Effect of cytokines on the in vitro fungicidal activity of monocytes from paracoccidioidomycosis patients. Microbes Infect 2003;5: 107–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Kurokawa CS, Araujo JP, Soares AM, Sugizaki MF, Peracoli MT. Pro- and anti-inflammatory cytokines produced by human monocytes challenged in vitro with Paracoccidioides brasiliensis. Microbiol Immunol 2007; 51:421–28.PubMedGoogle Scholar
  39. 39.
    Matsiota-Bernard P, Lefebre C, Sedqui M, Cornillet P, Guenounou M. Involvement of tumor necrosis factor alpha in intracellular multiplication of Legionella pneumophila in human monocytes. Infect Immun 1993;61:4980–83.PubMedGoogle Scholar
  40. 40.
    Reiner NE, Ng W, Wilson CB, McMaster WR, Burchett SK. Modulation of in vitro monocyte cytokine responses to Leishmania donovani. Interferon-gamma prevents parasite-induced inhibition to interleukin 1 production and primes monocytes to respond to Leishmania by producing both tumor necrosis factor-alpha and interleukin 1. J Clin Invest 1990;85:1914–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Beaman L. Effects of recombinant gamma interferon and tumor necrosis factor on in vitro interactions of human mononuclear phagocytes with Coccidioides immitis. Infect Immun 1991;59:4227–29.PubMedGoogle Scholar
  42. 42.
    Carmo JPM, Dias-Melicio LA, Calvi SA, Peraçoli MTS, Soares AMVC. TNF-α activates human monocytes for Paracoccidioides brasiliensis killing by an H2O2-dependent mechanism. Med Mycol 2006;44:363–68.PubMedCrossRefGoogle Scholar
  43. 43.
    Murray HW, Cartelli DM. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and independent leishmanicidal activity. J Clin Invest 1983;72:32–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Martin JH, Edwards SW. Interferon-gamma enhances monocyte citotoxicity via enhanced reactive oxygen intermediate production. Absence of an effect on macrophage cytotoxicity is due to failure to enhance reactive nitrogen intermediate production. Immunology 1994;81: 592–97.PubMedGoogle Scholar
  45. 45.
    Peraçoli MT, Mota NG, Montenegro MR. Experimental paracoccidioidomycosis in the Syrian hamster. Morphology and correlation of lesions with humoral and cell-mediated immunity. Mycopathologia 1982;79:7–17.PubMedCrossRefGoogle Scholar
  46. 46.
    Neworal EP, Altemani A, Mamoni RL, Noronha IL, Blotta MH. Immunocytochemical localization of cytokines and inducible nitric oxide synthase (iNOS) in oral mucosa and lymph nodes of patients with paracoccidioidomycosis. Cytokine 2003;21:234–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Kindler V, Sappino AP, Grau GE, Piguet PF, Vassali P. The inducing role of tumor necrosis factor in the development of bacterial granulomas during BCG infection. Cell 1989;56:731–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Flory CM, Jones ML, Miller BF, Warren JS. Regulatory roles of tumor necrosis factor-alpha and interleukin-1 beta in monocyte chemoattractant protein-1-mediated pulmonary granuloma formation in the rat. Am J Pathol 1995; 146:450–62.PubMedGoogle Scholar
  49. 49.
    Takashima T, Ohnishi K, Tsuyuguchi I, Kishimoto S. Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human blood monocytes by IFN-gamma and IL-4. J Immunol 1993; 150:3002–10.PubMedGoogle Scholar
  50. 50.
    Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987;235:473–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Bocca AL, Hayashi EE, Pinheiro AG, Furlanetto AB, Campanelli AP, Cunha FQ, Figueiredo F. Treatment of Paracoccidioides brasiliensis-infected mice with a nitric oxide inhibitor prevents the failure of cell-mediated immune response. J Immunol 1998;161:3056–63.PubMedGoogle Scholar
  52. 52.
    Gonzalez A, de Gregori W, Velez D, Restrepo A, Cano LE. Nitric oxide participation in the fungicidal mechanism of gamma interferon-activated murine macrophages against Paracoccidioides brasiliensis conidia. Infect Immun 2000;68:2546–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Seitzer U, Scheel-Toellner D, Toellner KM, Reiling N, Haas H, Galle J, Flad HD, Gerdes J. Properties of multinucleated giant cells in a new in vitro model for human granuloma formation. J Pathol 1997;182:99–105.PubMedCrossRefGoogle Scholar
  54. 54.
    Hernandez-Pando R, Bornstein QL, Aguilar Leon D, Orozco EH, Madrigal VK, Martinez Cordero E. Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 2000;100: 352–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Seitzer U, Haas H, Gerdes J. A Human in vitro granuloma model for the investigation of multinucleated giant cell and␣granuloma formation. Histol Histopathol 2001;16: 645–53.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Magda Paula Pereira do Nascimento
    • 1
  • Angela Maria Victoriano de Campos Soares
    • 1
  • Luciane Alarcão Dias-Melicio
    • 1
  • Maria Rita Parise-Fortes
    • 2
  • Rosana Aparecida Rodrigues Martins
    • 1
  • Erika Takahashi Nakaira
    • 1
  • Maria Terezinha Serrão Peraçoli
    • 1
  1. 1.Department of Microbiology and ImmunologyBiosciences Institute, São Paulo State University (UNESP)BotucatuBrazil
  2. 2.Department of Dermatology and RadiotherapyMedical School, São Paulo State UniversityBotucatuBrazil

Personalised recommendations