Advertisement

Mycopathologia

, Volume 161, Issue 4, pp 239–243 | Cite as

Validation of an HPLC Analytical Method Coupled to a Multifunctional Clean-up Column for the Determination of Deoxynivalenol

  • Yoshiko Sugita-Konsihi
  • Toshitsugu Tanaka
  • Setsuko Tabata
  • Masahiro Nakajima
  • Masanori Nouno
  • Yoko Nakaie
  • Takao Chonan
  • Mitsutoshi Aoyagi
  • Nobuyuki Kibune
  • Kazutoshi Mizuno
  • Eiichi Ishikuro
  • Naoki Kanamaru
  • Masatoshi Minamisawa
  • Norio Aita
  • Masayo Kushiro
  • Kenji Tanaka
  • Kosuke Takatori
Article

Abstract

To evaluate a method using a multifunctional clean-up column coupled with high performance liquid chromatography as an official analytical method for the determination of deoxynivalenol in wheat used as food or feed, an inter-laboratory study was performed in 12 laboratories using four naturally contaminated wheat samples and one spiked sample. The relative standard deviations for repeatability (RSDr) and reproducibility (RSDR) of naturally contaminated wheat were in the range 5.8–11.3% and 12.0–20.7%, respectively. The HORRAT was less than 1.0 in each sample. From the spiking test, the recovery rate, RSDr, RSDR and HORRAT value were 100.0%, 11.2%, 10.3% and 0.5, respectively. The limit of quantification is 0.10 mg/kg from the range obtained in a linear calibration. Thus, it should be useful as a sensitive and validated analytical method for the determination of deoxynivalenol in wheat intended for use in food and feed.

Keywords

Deoxynivalenol (DON) HPLC inter-laboratory study multifunctional clean-up column validation wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanaka, T, Hasegawa, A, Yamamoto, S, Lee, US, Sugiura, Y, Ueno, Y 1988World wide contamination of cereals by the Fusarium mycotoxins, nivalenol, deoxynivalenol, and zearalenone. 1. Survey of 19 countriesJ Agric Food Chem36979983Google Scholar
  2. 2.
    Rotter, BA, Prelusky, DB, Pestka, JJ 1996Toxicology of deoxynivalenol (vomitoxin)J Toxicol Environ48134Google Scholar
  3. 3.
    Joint FAO/WHO Expert Committee on Food Additives 47th Session ed., Safety evaluation of certain mycotoxins in food. Geneva, 2001; pp. 419–556.Google Scholar
  4. 4.
    Tanaka, T, Hasegawa, A, Matsuki, Y, Ueno, Y 1985A survey of the occurrence of nivalenol, deoxynivalenol and zearalenone in foodstuffs and health foods in JapanFood Addit Contam2259265PubMedGoogle Scholar
  5. 5.
    Yoshizawa, T 1984 Natural occurrence of Fusarium toxins in JapanKurata, HUeno, Y eds. Toxigenic Fungi-Their Toxins and Health HazardElsevierAmsterdam292300Google Scholar
  6. 6.
    Scientific Committee on Food. Opinion of the Scientific Committee on Food on Fusarium toxins, Part 6: Group evaluation of T-2 toxin, HT-2 toxin, nivalenol and deoxynivalenol (adopted on 26 February 2002). http://www.europa.eu.int/comm/food/fs/sc/scf/index_en.html .
  7. 7.
    Josephs, RD, Schuhmacher, R, Krska, R 2001International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxynivalenol in agricultural commoditiesFood Addit Contam18417430PubMedGoogle Scholar
  8. 8.
    Lauren, DR, Greenhalgh, R 1987Simultaneous analysis of nivalenol and deoxynivalenol in cereals by liquid chromatographyJ Assoc Off Anal Chem70479483PubMedGoogle Scholar
  9. 9.
    Shirai, Y, Ono, Y, Akimoto, K 2000Simultaneous determination of deoxynivalenol and nivalenol in grain by high performance liquid chromatography with multifunctional clean up column for purificationRes Rep Animal Feed2619Google Scholar
  10. 10.
    Plattner, RD 1999HPLC/MS analysis of fusarium mycotoxins, fumonisins and deoxynivalenolNat Toxins7365370CrossRefPubMedGoogle Scholar
  11. 11.
    Berger, U, Oehme, M, Kuhn, F 1999Quantitative determination and structure elucidation of type A- and B-trichothecenes by HPLC/ion trap multiple mass spectrometryJ Agric Food Chem4742404245PubMedGoogle Scholar
  12. 12.
    Voyksner, RD, Hagler, WM, Swanson, SP 1987Analysis of some metabolites of T-2 toxin, diacetoxyscirpenol and deoxynivalenol by thermospray high-performance liquid chromatography-mass spectrometryJ Chromatogr A394183199CrossRefGoogle Scholar
  13. 13.
    Scott, PM, Lombaert, GA, Pellaers, P, Bacler, S, Kanhere, SR, Sun, WF, Lau, PY, Weber, D 1989Application of capillary gas chromatography to a survey of wheat for five trichothecenesFood Addit Contam6489500PubMedGoogle Scholar
  14. 14.
    Tanaka, T, Yoneda, A, Inoue, S, Sugiura, Y, Ueno, Y 2000Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography-mass spectrometryJ Chromatogr A8822328CrossRefPubMedGoogle Scholar
  15. 15.
    Scott, PM, Lau, PY, Kanhere, SR 1981Gas chromatography with electron capture and mass spectrometric detection of deoxynivalenol in wheat and other grainsJ Assoc Off Anal Chem6413641371PubMedGoogle Scholar
  16. 16.
    Tanaka, T, Hasegawa, A, Matsuki, Y, Ishii, K, Ueno, Y 1985An improved methodology for simultaneous detection of the trichothecene mycotoxins deoxynivalenol and nivalenol in cerealFood Addit Contam2125137PubMedGoogle Scholar
  17. 17.
    Trucksess, MW, Page, SW, Wood, GE, Cho, TH 1998Determination of deoxynivalenol in white flour, whole wheat flour, and bran by solid-phase extraction/liquid chromatography: Interlaboratory studyJ AOAC Int81880886PubMedGoogle Scholar
  18. 18.
    Malone, BR, Humphrey, CW, Romer, TR, Richard, JL 1998One-step solid-phase extraction cleanup and fluorometric analysis of deoxynivalenol in grainsJ AOAC Int81448452PubMedGoogle Scholar
  19. 19.
    Scott, PM, Trucksess, MW 1997Application of immunoaffinity columns to mycotoxin analysisJ AOAC Int80941949PubMedGoogle Scholar
  20. 20.
    Dietrich, R, Schneider, E, Usleber, E, Martlbauer, E 1995Use of monoclonal antibodies for the analysis of mycotoxinsNat Toxins3288293PubMedGoogle Scholar
  21. 21.
    Cahill, LM, Kruger, SC, McAlice, BT, Ramsey, CS, Prioli, R, Kohn, B 1999Quantification of deoxynivalenol in wheat using an immunoaffinity column and liquid chromatographyJ Chromatogr A8592328CrossRefPubMedGoogle Scholar
  22. 22.
    Horwitz, W 1995Protocol for the design, conduct and inter-pretation of method-performance studiesPure Appl Chem67331343Google Scholar
  23. 23.
    Youden, WJ, Steiner, EH 1975Statistical analysisYouden, WJSteiner, EH eds. Statistical Manual of the Association of Official Analytical ChemistsAssociation of Official Analytical ChemistsArlington7283Google Scholar
  24. 24.
    Gilbert, J 2002Validation of analytical methods for determining mycotoxins in foodstuffsTrends Analyt Chem21468486Google Scholar
  25. 25.
    Horwitz, W. Guidelines for Collaorative Study Procedures to validate characteristics of a method of analysis. AOAC official methods of analysis. 17th Ed. appendix D, 2000; pp. 1–11.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Yoshiko Sugita-Konsihi
    • 1
  • Toshitsugu Tanaka
    • 2
  • Setsuko Tabata
    • 3
  • Masahiro Nakajima
    • 4
  • Masanori Nouno
    • 5
  • Yoko Nakaie
    • 6
  • Takao Chonan
    • 7
  • Mitsutoshi Aoyagi
    • 7
  • Nobuyuki Kibune
    • 8
  • Kazutoshi Mizuno
    • 9
  • Eiichi Ishikuro
    • 9
  • Naoki Kanamaru
    • 10
  • Masatoshi Minamisawa
    • 10
  • Norio Aita
    • 11
  • Masayo Kushiro
    • 12
  • Kenji Tanaka
    • 12
  • Kosuke Takatori
    • 1
  1. 1.National Institute of Health SciencesTokyoJapan
  2. 2.Kobe Institute of HealthKobeJapan
  3. 3.Tokyo Metropolitan Institute of Public HealthTokyoJapan
  4. 4.Nagoya City Public Health Research InstituteNagoyaJapan
  5. 5.Yokohama Quarantine StationYokohamaJapan
  6. 6.Kobe Quarantine StationKobeJapan
  7. 7.Hokkaido Institute of Public HealthHokkaidoJapan
  8. 8.Japan Food Research Laboratories, Osaka branchOsakaJapan
  9. 9.Fertilizer and Feed Inspection ServicesTokyoJapan
  10. 10.Japan Grain Inspection AssociationTokyoJapan
  11. 11.Fertilizer and Feed Inspection Services, Sendai BranchSendaiJapan
  12. 12.National Food Research InstituteTokyoJapan

Personalised recommendations