Multiobjective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption

Abstract

Chaotic-based image encryption approaches have attracted great attention in the field of information security. The properties of chaotic maps such as randomness and sensitivity have given new ways to develop efficient encryption approaches. But chaotic maps require initial parameters to develop random sequences. The selection of these parameters is a tedious task. To obtain the optimal initial parameters, evolutionary optimization approaches have been utilized in image encryption. Therefore, in this paper, a hyper-chaotic map is optimized using a multiobjective evolutionary optimization approach. A dual local search based multiobjective optimization (DLS-MO) is used to obtain the optimal parameters of a hyper-chaotic map and encryption factors. Then, using optimal parameters, a hyper-chaotic map develops the secret keys. These secret keys are then used to perform permutation and diffusion on a plain image to develop the encrypted image. To perform encryption, permutation–permutation–diffusion–diffusion architecture is adopted for better confusion and diffusion. Experimental results show that the proposed approach provides better performance in comparison to existing competitive approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbasi, A. A., Mazinani, M., & Hosseini, R. (2020). Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice. Optik, 219, 164949.

    Google Scholar 

  2. Akhavan, A., Samsudin, A., & Akhshani, A. (2017). Cryptanalysis of an image encryption algorithm based on DNA encoding. Optics and Laser Technology, 95, 94–99.

    Google Scholar 

  3. Basavegowda, H. S., & Dagnew, G. (2020). Deep learning approach for microarray cancer data classification. CAAI Transactions on Intelligence Technology, 5(1), 22–33.

    Google Scholar 

  4. Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research, 181(3), 1653–1669.

    MATH  Google Scholar 

  5. Çavuşoğlu, Ü., Kaçar, S., Pehlivan, I., & Zengin, A. (2017). Secure image encryption algorithm design using a novel chaos based S-Box. Chaos, Solitons and Fractals, 95, 92–101.

    MATH  Google Scholar 

  6. Chen, L., Ma, B., Zhao, X., & Wang, S. (2017). Differential cryptanalysis of a novel image encryption algorithm based on chaos and line map. Nonlinear Dynamics, 87(3), 1797–1807.

    MATH  Google Scholar 

  7. Chen, E., Min, L., & Chen, G. (2017). Discrete chaotic systems with one-line equilibria and their application to image encryption. International Journal of Bifurcation and Chaos, 27(03), 1750046.

    MathSciNet  MATH  Google Scholar 

  8. Enayatifar, R., Abdullah, A. H., & Isnin, I. F. (2014). Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Optics and Lasers in Engineering, 56, 83–93.

    Google Scholar 

  9. Ghosh, S., Shivakumara, P., Roy, P., Pal, U., & Lu, T. (2020). Graphology based handwritten character analysis for human behaviour identification. CAAI Transactions on Intelligence Technology, 5(1), 55–65.

    Google Scholar 

  10. Gupta, A., Singh, D., & Kaur, M. (2020). An efficient image encryption using non-dominated sorting genetic algorithm-III based 4-D chaotic maps. Journal of Ambient Intelligence and Humanized Computing, 11(3), 1309–1324.

    Google Scholar 

  11. Gupta, B., Tiwari, M., & Lamba, S. S. (2019). Visibility improvement and mass segmentation of mammogram images using quantile separated histogram equalisation with local contrast enhancement. CAAI Transactions on Intelligence Technology, 4(2), 73–79.

    Google Scholar 

  12. Hansen, N., Arnold, D. V., & Auger, A. (2015). Evolution strategies. In Springer handbook of computational intelligence (pp. 871–898). Springer.

  13. Hong, W., Tang, K., Zhou, A., Ishibuchi, H., & Yao, X. (2018). A scalable indicator-based evolutionary algorithm for large-scale multiobjective optimization. IEEE Transactions on Evolutionary Computation, 23(3), 525–537.

    Google Scholar 

  14. Huang, Z.-J., Cheng, S., Gong, L.-H., & Zhou, N.-R. (2020). Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Optics and Lasers in Engineering, 124, 105821.

    Google Scholar 

  15. Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2020). Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1788642.

  16. Kaur, M., Gianey, H. K., Singh, D., & Sabharwal, M. (2019). Multi-objective differential evolution based random forest for e-health applications. Modern Physics Letters B, 33(05), 1950022.

    Google Scholar 

  17. Kaur, M., & Kumar, V. (2018). Beta chaotic map based image encryption using genetic algorithm. International Journal of Bifurcation and Chaos, 28(11), 1850132.

    MathSciNet  MATH  Google Scholar 

  18. Kaur, M., & Kumar, V. (2018). Colour image encryption technique using differential evolution in non-subsampled contourlet transform domain. IET Image Processing, 12(7), 1273–1283.

    Google Scholar 

  19. Kaur, M., & Kumar, V. (2018). Adaptive differential evolution-based lorenz chaotic system for image encryption. Arabian Journal for Science and Engineering, 43(12), 8127–8144.

    Google Scholar 

  20. Kaur, M., & Kumar, V. (2018). Fourier-mellin moment-based intertwining map for image encryption. Modern Physics Letters B, 32(09), 1850115.

    MathSciNet  Google Scholar 

  21. Kaur, M., & Kumar, V. (2018). Parallel non-dominated sorting genetic algorithm-II-based image encryption technique. The Imaging Science Journal, 66(8), 453–462.

    Google Scholar 

  22. Kaur, M., Kumar, V., & Li, L. (2019). Color image encryption approach based on memetic differential evolution. Neural Computing and Applications, 31(11), 7975–7987.

    Google Scholar 

  23. Kaur, M., & Singh, D. (2019). Fusion of medical images using deep belief networks. Cluster Computing,. https://doi.org/10.1007/s10586-019-02999-x.

    Article  Google Scholar 

  24. Kaur, M., Singh, D., Kumar, V., & Sun, K. (2020). Color image dehazing using gradient channel prior and guided L0 filter. Information Sciences, 521, 326–342. https://doi.org/10.1016/j.ins.2020.02.048. http://www.sciencedirect.com/science/article/pii/S0020025520301316.

  25. Kaur, M., Singh, D., & Singh Uppal, R. (2020). Parallel strength pareto evolutionary algorithm-II based image encryption. IET Image Processing, 14(6), 1015–1026.

    Google Scholar 

  26. Kaur, M., Singh, D., Sun, K., & Rawat, U. (2020). Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5D chaotic map. Future Generation Computer Systems, 107, 333–350.

    Google Scholar 

  27. Kaur, M., Singh, D., & Uppal, R. S. (2019). Parallel strength pareto evolutionary algorithm-II based image encryption. IET Image Processing, 14(6), 1015–1026.

    Google Scholar 

  28. Khan, M., & Asghar, Z. (2018). A novel construction of substitution box for image encryption applications with gingerbreadman chaotic map and \(S_{8}\) permutation. Neural Computing and Applications, 29(4), 993–999.

    Google Scholar 

  29. Krishna, G. J., Ravi, V., & Bhattu, S. N. (2018). Key generation for plain text in stream cipher via bi-objective evolutionary computing. Applied Soft Computing, 70, 301–317.

    Google Scholar 

  30. Kumar, M., Iqbal, A., & Kumar, P. (2016). A new RGB image encryption algorithm based on DNA encoding and elliptic curve Diffie–Hellman cryptography. Signal Processing, 125, 187–202.

    Google Scholar 

  31. Li, C. (2016). Cracking a hierarchical chaotic image encryption algorithm based on permutation. Signal Processing, 118, 203–210.

    Google Scholar 

  32. Li, C., Luo, G., Qin, K., & Li, C. (2017). An image encryption scheme based on chaotic tent map. Nonlinear Dynamics, 87(1), 127–133.

    Google Scholar 

  33. Liao, X., Hahsmi, M. A., Haider, R., et al. (2018). An efficient mixed inter-intra pixels substitution at 2bits-level for image encryption technique using DNA and chaos. Optik-International Journal for Light and Electron Optics, 153, 117–134.

    Google Scholar 

  34. Liu, H., Kadir, A., & Sun, X. (2017). Chaos-based fast colour image encryption scheme with true random number keys from environmental noise. IET Image Processing, 11(5), 324–332.

    Google Scholar 

  35. Liu, H., Wen, F., & Kadir, A. (2019). Construction of a new 2D Chebyshev-Sine map and its application to color image encryption. Multimedia Tools and Applications, 78(12), 15997–16010.

    Google Scholar 

  36. Mahmud, M., Lee, M., Choi, J.-Y., et al. (2020). Evolutionary-based image encryption using RNA codons truth table. Optics and Laser Technology, 121, 105818.

    Google Scholar 

  37. Matthews, R. (1989). On the derivation of a “chaotic” encryption algorithm. Cryptologia, 13(1), 29–42.

    MathSciNet  Google Scholar 

  38. Nematzadeh, H., Enayatifar, R., Motameni, H., Guimarães, F. G., & Coelho, V. N. (2018). Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices. Optics and Lasers in Engineering, 110, 24–32.

    Google Scholar 

  39. Noshadian, S., Ebrahimzade, A., & Kazemitabar, S. J. (2018). Optimizing chaos based image encryption. Multimedia Tools and Applications, 77(19), 25569–25590.

    Google Scholar 

  40. Osterland, S., & Weber, J. (2019). Analytical analysis of single-stage pressure relief valves. International Journal of Hydromechatronics, 2(1), 32–53.

    Google Scholar 

  41. Pannu, H. S., Singh, D., & Malhi, A. K. (2018). Improved particle swarm optimization based adaptive neuro-fuzzy inference system for benzene detection. CLEAN-Soil, Air, Water, 46(5), 1700162.

    Google Scholar 

  42. Pannu, H. S., Singh, D., & Malhi, A. K. (2019). Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring. Neural Computing and Applications, 31, 2195–2205.

    Google Scholar 

  43. Pathak, Y., Shukla, P. K., Tiwari, A., Stalin, S., Singh, S., & Shukla, P. K. (2020). Deep transfer learning based classification model for COVID-19 disease. IRBM,. https://doi.org/10.1016/j.irbm.2020.05.003.

    Article  Google Scholar 

  44. Shankar, K., & Eswaran, P. (2016). An efficient image encryption technique based on optimized key generation in ECC using genetic algorithm. In Artificial intelligence and evolutionary computations in engineering systems (pp. 705–714). Springer.

  45. Shukla, P. K., Shukla, P. K., Sharma, P., Rawat, P., Samar, J., Moriwal, R., et al. (2020). Efficient prediction of drug–drug interaction using deep learning models. IET Systems Biology,. https://doi.org/10.1049/iet-syb.2019.0116.

    Article  Google Scholar 

  46. Singh, D., Kaur, M., & Singh, H. (2018). Remote sensing image fusion using fuzzy logic and gyrator transform. Remote Sensing Letters, 9(10), 942–951.

    Google Scholar 

  47. Singh, D., & Kumar, V. (2018). Dehazing of outdoor images using notch based integral guided filter. Multimedia Tools and Applications, 77(20), 27363–27386.

    Google Scholar 

  48. Singh, D., & Kumar, V. (2019). A comprehensive review of computational dehazing techniques. Archives of Computational Methods in Engineering, 26(5), 1395–1413.

    Google Scholar 

  49. Singh, D., & Kumar, V. (2019). Single image defogging by gain gradient image filter. Science China Information Sciences, 62(7), 79101.

    MathSciNet  Google Scholar 

  50. Singh, D., Kumar, V., & Kaur, M. (2019). Single image dehazing using gradient channel prior. Applied Intelligence, 49(12), 4276–4293.

    Google Scholar 

  51. Singh, D., Kumar, V., & Kaur, M. (2019). Image dehazing using window-based integrated means filter. Multimedia Tools and Applications,. https://doi.org/10.1007/s11042-019-08286-6.

    Article  Google Scholar 

  52. Singh, D., Kumar, V., & Vaishali, M. K. (2020). Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. European Journal of Clinical Microbiology and Infectious Diseases, 39, 1–11. https://doi.org/10.1007/s10096-020-03901-z.

    Article  Google Scholar 

  53. Suri, S., & Vijay, R. (2020). A Pareto-optimal evolutionary approach of image encryption using coupled map lattice and DNA. Neural Computing and Applications, 32, 11859–11873.

    Google Scholar 

  54. Usama, M., Khan, M. K., Alghathbar, K., & Lee, C. (2010). Chaos-based secure satellite imagery cryptosystem. Computers and Mathematics with Applications, 60(2), 326–337.

    MathSciNet  MATH  Google Scholar 

  55. Wang, X., Yin, Y. L., & Yu, H. (2005). Finding collisions in the full SHA-1. In Annual international cryptology conference (pp. 17–36). Springer.

  56. Wang, R., Yu, H., Wang, G., Zhang, G., & Wang, W. (2019). Study on the dynamic and static characteristics of gas static thrust bearing with micro-hole restrictors. International Journal of Hydromechatronics, 2(3), 189–202.

    Google Scholar 

  57. Wang, X.-Y., Zhang, Y.-Q., & Bao, X.-M. (2015). A novel chaotic image encryption scheme using DNA sequence operations. Optics and Lasers in Engineering, 73, 53–61.

    Google Scholar 

  58. Wen, W. (2016). Security analysis of a color image encryption scheme based on skew tent map and hyper chaotic system of 6th-order CNN against chosen-plaintext attack. Multimedia Tools and Applications, 75(6), 3553–3560.

    Google Scholar 

  59. While, L., Hingston, P., Barone, L., & Huband, S. (2006). A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation, 10(1), 29–38.

    Google Scholar 

  60. Wiens, T. (2019). Engine speed reduction for hydraulic machinery using predictive algorithms. International Journal of Hydromechatronics, 2(1), 16–31.

    Google Scholar 

  61. Wu, J., Liao, X., & Yang, B. (2018). Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation. Signal Processing, 142, 292–300.

    Google Scholar 

  62. Wu, Y., Noonan, J. P., Agaian, S., et al. (2011). NPCR and UACI randomness tests for image encryption. Cyber Journals: Multidisciplinary Journals in Science and Technology Journal of Selected Areas in Telecommunications (JSAT), 1(2), 31–38.

    Google Scholar 

  63. Wu, Y., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J. P., & Natarajan, P. (2013). Local Shannon entropy measure with statistical tests for image randomness. Information Sciences, 222, 323–342.

    MathSciNet  MATH  Google Scholar 

  64. Yang, P., Tang, K., & Yao, X. (2017). Turning high-dimensional optimization into computationally expensive optimization. IEEE Transactions on Evolutionary Computation, 22(1), 143–156.

    Google Scholar 

  65. Zhang, X., Fan, X., Wang, J., & Zhao, Z. (2016). A chaos-based image encryption scheme using 2D rectangular transform and dependent substitution. Multimedia Tools and Applications, 75(4), 1745–1763.

    Google Scholar 

  66. Zhang, Y.-Q., & Wang, X.-Y. (2014). Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Nonlinear Dynamics, 77(3), 687–698.

    Google Scholar 

  67. Zhang, W., Yu, H., Zhao, Y.-L., & Zhu, Z.-L. (2016). Image encryption based on three-dimensional bit matrix permutation. Signal Processing, 118, 36–50.

    Google Scholar 

  68. Zhang, X., Zhu, G., & Ma, S. (2012). Remote-sensing image encryption in hybrid domains. Optics Communications, 285(7), 1736–1743.

    Google Scholar 

  69. Zhou, G., Zhang, D., Liu, Y., Yuan, Y., & Liu, Q. (2015). A novel image encryption algorithm based on chaos and line map. Neurocomputing, 169, 150–157.

    Google Scholar 

  70. Zhu, Z.-L., Zhang, W., Wong, K.-W., & Yu, H. (2011). A chaos-based symmetric image encryption scheme using a bit-level permutation. Information Sciences, 181(6), 1171–1186.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Singh, D. Multiobjective evolutionary optimization techniques based hyperchaotic map and their applications in image encryption. Multidim Syst Sign Process 32, 281–301 (2021). https://doi.org/10.1007/s11045-020-00739-8

Download citation

Keywords

  • Image encryption
  • DLS-MO
  • Hyper-chaotic map
  • Parameter tuning