A hybrid algorithm for robust image steganography

Abstract

In this work, a novel hybrid algorithm has been developed for achieving imperceptible and robust image steganography for secure data communication. The novelty of the work lies in the careful manipulation of higher frequency coefficient of Discrete Cosine Transform (DCT) to maintain the perceptual quality of the image followed by embedding secret bits in the controlled DCT coefficients using random locations identified by deterministic Coupled Chaotic Map (CCM). The randomness of the CCM map is confirmed by National Institute of Standards and Technology, DIEHARD, ENT and TestU01 test suites. The experimental results demonstrate that the proposed technique has excellent stego-image quality keeping zero Bit Error Rate at maximum embedding capacity (EC). The proposed method has capability to withstand against malicious users as well as outperforms existing steganography techniques in terms of EC, and Peak Signal to Noise Ratio. The security of the proposed technique is subsequently examined by the key length, key sensitivity parameter and histogram analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807–816.

    Google Scholar 

  2. Bhowal, K., Bhattacharyya, D., Pal, A. J., & Kim, T. H. (2013). A GA based audio steganography with enhanced security. Telecommunication Systems, 52(4), 2197–220.

    Google Scholar 

  3. Chan, C. K., & Cheng, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37(3), 469–474.

    MATH  Google Scholar 

  4. Chang, K. C., Chang, C. P., Huang, P. S., & Tu, T. M. (2008). A novel image steganographic method using tri-way pixel-value differencing. Journal of Multimedia, 3(2), 37–44.

    Google Scholar 

  5. Chao, R. M., Wu, H. C., Lee, C. C., & Chu, Y. P. (2009). A novel image data hiding scheme with diamond encoding. EURASIP Journal on Information Security, 2009(1), 658047.

    Google Scholar 

  6. Cheddad, A., Condell, J., Curran, K., & Mc Kevitt, P. (2010). Digital image steganography: Survey and analysis of current methods. Signal Processing, 90(3), 727–752.

    MATH  Google Scholar 

  7. Chen, J. (2014). A PVD-based data hiding method with histogram preserving using pixel pair matching. Signal Processing: Image Communication, 29(3), 375–384.

    Google Scholar 

  8. Cintra, R. J., Bayer, F. M., & Tablada, C. J. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214.

    Google Scholar 

  9. El Rahman, S. A. (2018). A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear reactors confidential information. Computers & Electrical Engineering, 70, 380–399.

    MathSciNet  Google Scholar 

  10. Ghebleh, M., Kanso, A., & Noura, H. (2014). An image encryption scheme based on irregularly decimated chaotic maps. Signal Processing: Image Communication., 29(5), 618–627.

    Google Scholar 

  11. Hussain, M., Wahab, A. W. A., Ho, A. T., Javed, N., & Jung, K. H. (2017). A data hiding scheme using parity-bit pixel value differencing and improved rightmost digit replacement. Signal Processing: Image Communication, 50, 44–57.

    Google Scholar 

  12. Jafari, R., Ziou, D., & Rashidi, M. M. (2013). Increasing image compression rate using steganography. Expert Systems with Applications, 40(17), 6918–6927.

    Google Scholar 

  13. Khan, A., & Sarfaraz, A. (2018). Novel high-capacity robust and imperceptible image steganography scheme using multi-flipped permutations and frequency entropy matching method. Soft Computing, 23(17), 1–12.

    Google Scholar 

  14. Khan, M., Shah, T., & Batool, S. I. (2014). Texture analysis of chaotic coupled map lattices based image encryption algorithm. 3D Research, 5(3), 19.

    Google Scholar 

  15. Kim, C., Kim, J., & Kim, D. J. (2019). Effects of personal motivation and computing characteristics on ubiquitous mobile device usages. International Journal of Mobile Communications, 17(2), 127–156.

    Google Scholar 

  16. Koupaei, J. A., Hosseini, S. M. M., & Ghaini, F. M. (2016). A new optimization algorithm based on chaotic maps and golden section search method. Engineering Applications of Artificial Intelligence, 50, 201–214.

    Google Scholar 

  17. L’Ecuyer, P., & Simard, R. (2007). TestU01: AC library for empirical testing of random number generators. ACM Transactions on Mathematical Software (TOMS), 33(4), 1–40.

    MATH  Google Scholar 

  18. Li, C. H., Lu, Z. M., & Su, Y. X. (2011). Reversible data hiding for BTC-compressed images based on biplane flipping and histogram shifting of mean tables. Information Technology Journal, 10(7), 1421–1426.

    Google Scholar 

  19. Lin, C. C., & Shiu, P. F. (2010). High capacity data hiding scheme for DCT-based images. Journal of Information Hiding and Multimedia Signal Processing, 1(3), 220–240.

    Google Scholar 

  20. Lin, Y. K. (2014). A data hiding scheme based upon DCT coefficient modification. Computer Standards & Interfaces, 36(5), 855–862.

    Google Scholar 

  21. Luo, H., Yu, F. X., Chen, H., Huang, Z. L., Li, H., & Wang, P. H. (2011). Reversible data hiding based on block median preservation. Information Sciences, 181(2), 308–328.

    Google Scholar 

  22. Malik, A., Sikka, G., & Verma, H. K. (2018). An AMBTC compression based data hiding scheme using pixel value adjusting strategy. Multidimensional Systems and Signal Processing, 29(4), 1801–1818.

    MATH  Google Scholar 

  23. Ma, Y., Luo, X., Li, X., Bao, Z., & Zhang, Y. (2018). Selection of rich model steganalysis features based on decision rough set \(\alpha \)-positive region reduction. IEEE Transactions on Circuits and Systems for Video Technology, 29(2), 336–350.

    Google Scholar 

  24. Maniriho, P., & Ahmad, T. (2018). Information hiding scheme for digital images using difference expansion and modulus function. Journal of King Saud University-Computer and Information Sciences, 31(3), 335–337.

    Google Scholar 

  25. Mao, Q., Li, F., & Chang, C. C. (2015). Reversible data hiding with oriented and minimized distortions using cascading trellis coding. Information Sciences, 317, 170–180.

    Google Scholar 

  26. Marsaglia, G. (1996). DIEHARD: A battery of tests of randomness. Retrieved February 11, 2020 from http://www.fsu.edu/pub/diehard.

  27. Mielikainen, J. (2006). LSB matching revisited. IEEE Signal Processing Letters, 13(5), 285–287.

    Google Scholar 

  28. Miri, A., & Faez, K. (2018). An image steganography method based on integer wavelet transforms. Multimedia Tools and Applications, 77(11), 13133–13144.

    Google Scholar 

  29. Mishra, M., Kumar, S., & Mishra, S., (2012). Security enhanced digital image steganography based on successive Arnold transformation. In Advances in computer science, engineering & applications (pp. 221–229).

  30. Pan, J. S., Li, W., Yang, C. S., & Yan, L. J. (2015). Image steganography based on subsampling and compressive sensing. Multimedia Tools and Applications, 74(21), 9191–9205.

    Google Scholar 

  31. Qiao, T., Luo, X., Wu, T., Xu, M., & Qian, Z. (2019). Adaptive steganalysis based on statistical model of quantized DCT coefficients for JPEG images. IEEE Transactions on Dependable and Secure Computing. https://doi.org/10.1109/TDSC.2019.2962672.

  32. Qin, C., Chang, C. C., & Lin, C. C. (2015). An adaptive reversible steganographic scheme based on the just noticeable distortion. Multimedia Tools and Applications, 74(6), 1983–1995.

    Google Scholar 

  33. Rajaraman, V. (2016). IEEE standard for floating point numbers. Resonance, 21(1), 11–30.

    Google Scholar 

  34. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications (p. 131). Gaithersburg: National Institute of Standards and Technology.

    Google Scholar 

  35. Saidi, M., Hermassi, H., Rhouma, R., & Belghith, S. (2017). A new adaptive image steganography scheme based on DCT and chaotic map. Multimedia Tools and Applications, 76(11), 13493–13510.

    Google Scholar 

  36. Subhedar, M. S., & Mankar, V. H. (2016). Image steganography using redundant discrete wavelet transform and QR factorization. Computers & Electrical Engineering, 54, 406–422.

    Google Scholar 

  37. Sun, W., Lu, Z. M., Wen, Y. C., Yu, F. X., & Shen, R. J. (2013). High performance reversible data hiding for block truncation coding compressed images. Signal, Image and Video Processing, 7(2), 297–306.

    Google Scholar 

  38. Swain, G. (2019). Two new steganography techniques based on quotient value differencing with addition-subtraction logic and PVD with modulus function. Optik, 180, 807–823.

    Google Scholar 

  39. Tang, M., Hu, J., Song, W., & Zeng, S. (2015). Reversible and adaptive image steganographic method. AEU-International Journal of Electronics and Communications, 69(12), 1745–1754.

    Google Scholar 

  40. Tseng, H. W., & Leng, H. S. (2013). A steganographic method based on pixel-value differencing and the perfect square number. Journal of Applied Mathematics, 2013, 1–8.

    MathSciNet  MATH  Google Scholar 

  41. Valandar, M. Y., Ayubi, P., & Barani, M. J. (2017). A new transform domain steganography based on modified logistic chaotic map for color images. Journal of Information Security and Applications, 34, 142–151.

    Google Scholar 

  42. Valandar, M. Y., Barani, M. J., Ayubi, P., & Aghazadeh, M. (2018). An integer wavelet transforms image steganography method based on 3D sine chaotic map. Multimedia Tools and Applications, 78(8), 1–19.

    Google Scholar 

  43. Walker, J. (2008). Ent-a pseudorandom sequence test program. Retrieved February 14, 2020 from http://www.fourmilab.ch/random/.

  44. Wang, C. C., Chang, Y. F., Chang, C. C., Jan, J. K., & Lin, C. C. (2014). A high capacity data hiding scheme for binary images based on block patterns. Journal of Systems and Software, 93, 152–162.

    Google Scholar 

  45. Wang, K., Lu, Z. M., & Hu, Y. J. (2013). A high capacity lossless data hiding scheme for JPEG images. Journal of Systems and Software, 86(7), 1965–1975.

    Google Scholar 

  46. Wang, X. T., Chang, C. C., Nguyen, T. S., & Li, M. C. (2013). Reversible data hiding for high quality images exploiting interpolation and direction order mechanism. Digital Signal Processing, 23(2), 569–577.

    MathSciNet  Google Scholar 

  47. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Google Scholar 

  48. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Google Scholar 

  49. Wu, N. I., Wu, K. C., & Wang, C. M. (2012). Exploring pixel-value differencing and base decomposition for low distortion data embedding. Applied Soft Computing, 12(2), 942–960.

    Google Scholar 

  50. Yao, Y., Zhang, W., Yu, N., & Zhao, X. (2015). Defining embedding distortion for motion vector-based video steganography. Multimedia Tools and Applications, 74(24), 11163–11186.

    Google Scholar 

  51. Zhang, Y., Luo, X., Guo, Y., Qin, C., & Liu, F. (2019). Multiple robustness enhancements for image adaptive steganography in lossy channels. IEEE Transactions on Circuits and Systems for Video Technology. https://doi.org/10.1109/TCSVT.2019.2923980.

  52. Zhang, Y., Luo, X., Yang, C., & Liu, F. (2017). Joint JPEG compression and detection resistant performance enhancement for adaptive steganography using feature regions selection. Multimedia Tools and Applications, 76(3), 3649–3668.

    Google Scholar 

  53. Zhang, Y., Luo, X., Yang, C., Ye, D., & Liu, F. (2016). A framework of adaptive steganography resisting JPEG compression and detection. Security and Communication Networks, 9(15), 2957–2971.

    Google Scholar 

  54. Zhang, Y., Qin, C., Zhang, W., Liu, F., & Luo, X. (2018). On the fault-tolerant performance for a class of robust image steganography. Signal Processing, 146, 99–111.

    Google Scholar 

  55. Zhang, X., & Wang, S. (2006). Efficient steganographic embedding by exploiting modification direction. IEEE Communications Letters, 10(11), 781–783.

    MathSciNet  Google Scholar 

  56. Zhang, Y., Zhu, X., Qin, C., Yang, C., & Luo, X. (2018). Dither modulation based adaptive steganography resisting JPEG compression and statistic detection. Multimedia Tools and Applications, 77(14), 17913–17935.

    Google Scholar 

  57. Zhao, Z., Guan, Q., Zhang, H., & Zhao, X. (2018). Improving the robustness of adaptive steganographic algorithms based on transport channel matching. IEEE Transactions on Information Forensics and Security, 14(7), 1843–1856.

    Google Scholar 

Download references

Acknowledgements

RK would like to thank Harkirat Singh for useful discussions and inputs in reviewing manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajwinder Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Singh, B. A hybrid algorithm for robust image steganography. Multidim Syst Sign Process 32, 1–23 (2021). https://doi.org/10.1007/s11045-020-00725-0

Download citation

Keywords

  • DCT
  • Steganography
  • Chaotic Map
  • NIST