Local difference ternary sequences descriptor based on unsupervised min redundancy mutual information feature selection

Abstract

Texture feature description research have received significant attention in recent years. It is widely known that the local texture feature descriptor can achieve good performance under various image conditions, such as geometric size variation, different poses, complex illumination and partial occlusion. Although Local Difference Binary is an acknowledged excellent feature descriptor, it only computes the intensity and gradient difference on pairwise grid cells and ignores the image grid texture intensity and gradient. This paper proposes a novel local texture descriptor, named as Local Difference Ternary (LDT), which can not only represent difference and texture information of the grid cells intensity and gradient simultaneously, but also capture richer detailed texture information. In addition, the Unsupervised Min Redundancy Mutual Information (UMRMI) for feature selection is proposed to select the optimal subset of LDT features for achieving more powerfully discriminative ability. For the purpose of further improving the efficiency and effectiveness of UMRMI, we extend UMRMI to k-means space, namely k-UMRMI. Furthermore, a multi-degree scheme is adopted to achieve richer texture description. Finally, Radial Function Neural Network is employed for classification, which is an excellent classifier, especially for larger samples. Several experimental results on certain benchmark face databases demonstrate that our proposed method is remarkably superior to some other state-of-the-art approaches under various image conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Abdullah, M. F. A., Sayeed, M. S., Muthu, K. S., et al. (2014). Face recognition with symmetric local graph structure (SLGS). Expert Systems with Applications,41(14), 6131–6137.

    Article  Google Scholar 

  2. Alush, A., Friedman, A., & Goldberger, J. (2015). Pairwise clustering based on the mutual-information criterion. Neurocomputing,182(C), 284–293.

    Google Scholar 

  3. Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using joint mutual information maximisation. Expert Systems with Applications,42(22), 8520–8532.

    Article  Google Scholar 

  4. Cament, L. A., Castillo, L. E., Perez, J. P., Galdames, F. J., & Perez, C. A. (2014). Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recognition,47(2), 568–577.

    Article  Google Scholar 

  5. Hong, X., et al. (2014). Combining LBP difference and feature correlation for texture description. IEEE Transactions on Image Processing,23(6), 2557–2568.

    MathSciNet  MATH  Article  Google Scholar 

  6. Hsieh, P.-C., & Tung, P.-C. (2009). A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition. Pattern Recognition,42(1), 978–984.

    MATH  Article  Google Scholar 

  7. Huang, G., Mattar, M., Lee, H., et al. (2012). Learning to align from scratch. In: Advances in neural information processing systems (pp. 764–772).

  8. Huang, M., Mu, Z., Zeng, H., & Huang, S. (2015). Local image region description using orthogonal symmetric local ternary pattern. Pattern Recognition Letters,54, 56–62.

    Article  Google Scholar 

  9. Junling, X., Yuming, Z., Lin, C., & Baowe, X. (2012a). An unsupervised feature selection approach based on mutual information. Journal of Computer Research and Development,49(2), 372–382.

    Google Scholar 

  10. Junling, X., Yuming, Z., Lin, C., et al. (2012b). An unsupervised feature selection approach based on mutual information. Journal of Computer Research and Development,49(2), 372–382.

    Google Scholar 

  11. Kanan, H. R., & Faez, K. (2010). Recognizing faces using adaptively weighted sub-gabor array from a single sample image per enrolled subject. Image and Vision Computing,28(3), 438–448.

    Article  Google Scholar 

  12. Lampariello, F., & Sciandrone, M. (2001). Efficient training of RBF neural networks for pattern recognition. IEEE Transactions on Neural Networks,12(5), 1235.

    Article  Google Scholar 

  13. Legg, P. A., Rosin, P. L., Marshall, D., et al. (2015). Feature neighbourhood mutual information for multi-modal image registration: An application to eye fundus imaging. Pattern Recognition,48(6), 1937–1946.

    Article  Google Scholar 

  14. Lin, Y., Hu, Q., Liu, J., et al. (2016). Multi-label feature selection based on neighborhood mutual information. Applied Soft Computing,38, 244–256.

    Article  Google Scholar 

  15. Malkomes, G., Pordeus, J. P., & Fisch Brito, C. (2014). An improvement of the K-SVD algorithm with applications on face recognition. In: 2014 Brazilian conference on intelligent systems (BRACIS) (pp. 241–246).

  16. Mei, S., Bi, Q., Ji, J., Hou, J., & Du, Q. (2017a). Hyperspectral image classification by exploring low-rank property in spectral or/and spatial domain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,10(6), 2910–2921.

    Article  Google Scholar 

  17. Mei, S., Ji, J., Hou, J., Li, X., & Du, Q. (2017b). Learning sensor-specific spatial-spectral features of hyperspectral images via convolutional neural networks. IEEE Transactions on Geoscience & Remote Sensing,55(8), 4520–4533.

    Article  Google Scholar 

  18. Meng, J., & Zhang, W. (2007). Volume measure in 2DPCA-based face recognition. Pattern Recognition Letters,28(10), 1203–1208.

    Article  Google Scholar 

  19. Murala, S., & Wu, Q. M. J. (2013). Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing,119, 399–412.

    Article  Google Scholar 

  20. Murala, S., & Wu, Q. J. (2014). Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics,18(3), 929–937.

    Article  Google Scholar 

  21. Murala, S., & Wu, Q. M. J. (2015). Spherical symmetric 3D local ternary patterns for natural, texture and biomedical image indexing and retrieval. Neurocomputing,149, 1502–1514.

    Article  Google Scholar 

  22. Oh, J. H., & Kwak, N. (2013). Generalization of linear discriminant analysis using Lp-norm. Pattern Recognition Letters,34(6), 679–685.

    Article  Google Scholar 

  23. Ojala, T., Pietikainen, M., Maenpaa, T. (2001). A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Lecture Notes in Computer Science (pp. 397–406). Heidelberg: Springer.

    Google Scholar 

  24. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multi resolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,24(7), 971–987.

    MATH  Article  Google Scholar 

  25. Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and rain redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence,27(8), 1226–1238.

    Article  Google Scholar 

  26. Ren, J., Jiang, X., Yuan, J., & Wang, G. (2014). Optimizing LBP structure for visual recognition using binary quadratic programming. IEEE Signal Processing Letters,21(11), 1346–1350.

    Article  Google Scholar 

  27. Satpathy, A., Jiang, X., & Eng, H. (2014). LBP based edge-texture features for object recognition. IEEE Transactions on Image Processing,23(5), 1953–1964.

    MathSciNet  MATH  Article  Google Scholar 

  28. Selvan, S., Borckmans, P., Chattopadhyay, A., & Absil, P. (2013). Spherical mesh adaptive direct search for separating quasi-uncorrelated sources by range-based independent component analysis. Neural Computation,25(9), 2486–2522.

    MathSciNet  MATH  Article  Google Scholar 

  29. Shin, K., Feraday, S. A., Harris, C. J., & Brennan, M. J. (2003). Optimal auto-regressive modelling of a measured noisy deterministic signal using singular-value decomposition. Mechanical Systems and Signal Processing,17(2), 423–432.

    Article  Google Scholar 

  30. Shu, X., Gao, Y., & Lu, H. (2012). Efficient linear discriminant analysis with locality preserving for face recognition. Pattern Recognition,45(5), 1892–1898.

    MATH  Article  Google Scholar 

  31. Sun, Z., & Lam, K.-M. (2011). Depth estimation of face images based on the constrained ICA model. IEEE Transactions on Information Forensics and Security,6(2), 360–370.

    Article  Google Scholar 

  32. Tan, K., & Chen, S. (2005). Adaptively weighted sub-pattern PCA for face recognition. Neurocomputing,64(1), 505–511.

    MathSciNet  Article  Google Scholar 

  33. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing,19(6), 1635–1650.

    MathSciNet  MATH  Article  Google Scholar 

  34. Tapia, J., & Perez, C. (2013). Gender classification based on fusion of different spatial scale features selected by mutual information from histogram of LBP, intensity, and shape. IEEE Transactions on Information Forensics Security,8(3), 488–499.

    Article  Google Scholar 

  35. Walton, J., & Fairley, N. (2005). Noise reduction in X-ray photoelectron spectromicroscopy by a singular value decomposition sorting procedure. Journal of Electron Spectroscopy and Related Phenomena,148(1), 29–40.

    Article  Google Scholar 

  36. Wu, M., Zhou, J., & Sun, J. (2012). Multi-scale ICA texture pattern for gender recognition. Electronics Letters,48(11), 629–631.

    Article  Google Scholar 

  37. Yang, X., & Cheng, K. T. (2012). LDB: An ultra-fast feature for scalable augmented reality on mobile devices. In Proceedings of international symposium on mixed and augmented reality (ISMAR).

  38. Yang, X., & Cheng, K.-T. (2014). Local difference binary for ultrafastand distinctive feature description. IEEE Transactions on Pattern Analysis and Machine Intelligence,36(1), 188–194.

    Article  Google Scholar 

  39. Yang, J., & Liu, C. (2007). Horizontal and vertical 2DPCA-based discriminant analysis for face verification on a large-scale database. IEEE Transactions on Information Forensics and Security,2(4), 781–792.

    Article  Google Scholar 

  40. Yang, W., Sun, C., & Zhang, L. (2011). A multi-manifold discriminant analysis method for image feature extraction. Pattern Recognition,44(8), 1649–1657.

    MATH  Article  Google Scholar 

  41. Yang, J., et al. (2014). Heterogeneous vision chip and LBP-based algorithm for high-speed tracking. Electronics Letters,50(6), 438–439.

    Article  Google Scholar 

  42. Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor. IEEE Transactions on Image Processing,19(2), 533–544.

    MathSciNet  MATH  Article  Google Scholar 

  43. Zhang, Y., Li, S., Wang, S., & Shi, Y. Q. (2014). Revealing the traces of median filtering using high-order local ternary patterns. IEEE Signal Processing Letters,21(3), 275–280.

    Article  Google Scholar 

  44. Zhao, Y., Jia, W., Hu, R.-X., & Min, H. (2013). Completed robust local binary pattern for texture classification. Neurocomputing,106, 68–76.

    Article  Google Scholar 

  45. Zuñiga, A. G., Florindo, J. B., & Bruno, O. M. (2014). Gabor wavelets combined with volumetric fractal dimension applied to texture analysis. Pattern Recognition Letters,36, 135–143.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by Fundamental Research Funds for the Central Universities of Ministry of Education of China (310824172001, 310824171008), the National Natural Science Foundation of China (61302150, 61703054), Postdoctoral Science Foundation of China (2014M562356).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gao Tao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tao, G., Liu, Z., Cao, J. et al. Local difference ternary sequences descriptor based on unsupervised min redundancy mutual information feature selection. Multidim Syst Sign Process 31, 771–791 (2020). https://doi.org/10.1007/s11045-018-0595-z

Download citation

Keywords

  • Texture feature extraction
  • LDB
  • Feature selection
  • Multi-degrees