Skip to main content
Log in

Convergent method for designing high-accuracy bi-equiripple variable-delay filters using new delay-error expression

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a fast non-iterative approach to the design of an odd-order bi-equiripple variable-delay (VD) digital filter whose mathematical model is a multi-variable (MV) transfer function. The objective of the bi-equiripple design is to minimize the maximum frequency-response deviation of this MV transfer function while mitigating the large overshoots of the VD response at the same time. Since the group-delay function is nonlinear with respect to the MV transfer-function coefficients, it is first linearized through using an approximate approach. This linearization enables the bi-equiripple VD filter to be designed with linear constraints, and the bi-equiripple design is then formulated as a convex minimization problem. The convex minimization does not require any iterations and thus it is fast and yields a convergent optimal solution. Solving the convex minimization problem produces a bi-equiripple VD filter with minimized worst-case frequency-response error and mitigated VD-deviation overshoots (jumps). An illustrating example is presented to demonstrate the above simultaneous deviation suppressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Deng, T.-B. (2001). Discretization-free design of variable fractional-delay FIR digital filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 48(6), 637–644.

    Article  Google Scholar 

  • Deng, T.-B. (2004). Closed-form design and efficient implementation of variable digital filters with simultaneously tunable magnitude and fractional-delay. IEEE Transactions on Signal Processing, 52(6), 1668–1681.

    Article  MathSciNet  MATH  Google Scholar 

  • Deng, T.-B. (2007). Symmetric structures for odd-order maximally flat and weighted-least-squares variable fractional-delay filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(12), 2718–2732.

    Article  Google Scholar 

  • Deng, T.-B. (2011). Minimax design of low-complexity even-order variable fractional-delay filters using second-order cone programming. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(10), 692–696.

    Article  Google Scholar 

  • Deng, T.-B. (2012a). Bi-minimax design of odd-order variable fractional-delay digital filters. In Proceedings of IEEE ISCAS 2012 (pp. 786–789) Seoul, Korea.

  • Deng, T.-B. (2012b). Low-complexity and high-accuracy odd-order variable fractional-delay digital filters. In Proceedings of IEEE ICASSP 2012 (pp. 1589–1592). Kyoto, Japan.

  • Deng, T.-B., Chivapreecha, S., & Dejhan, K. (2012). Bi-minimax design of even-order variable fractional-delay FIR digital filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(8), 1766–1774.

    Article  MathSciNet  Google Scholar 

  • Deng, T.-B., & Lian, Y. (2006). Weighted-least-squares design of variable fractional-delay FIR filters using coefficient-symmetry. IEEE Transactions on Signal Processing, 54(8), 3023–3038.

    Article  MATH  Google Scholar 

  • Deng, T.-B., & Qin, W. (2013). Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters. Signal Processing, 93(4), 923–932.

    Article  Google Scholar 

  • Deng, T.-B., & Qin, W. (2014). Improved bi-equiripple variable fractional-delay filters. Signal Processing, 94(1), 300–307.

    Article  Google Scholar 

  • Deng, T.-B., & Soontornwong, P. (2016). Delay-error-constrained minimax design of all-pass variable-fractional-delay digital filters. Signal Processing, 120(3), 438–447.

    Article  Google Scholar 

  • Farrow, C. W. (1988). A continuously variable digital delay element. In Proceedings of IEEE ISCAS 1988 (Vol. 3, pp. 2641–2645). Espoo, Finland.

  • Liu, G.-S., & Wei, C.-W. (1992). A new variable fractional sample delay filter with nonlinear interpolation. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(2), 123–126.

    Article  Google Scholar 

  • Liu, J.-C., & You, S.-J. (2007). Weighted least squares near-equiripple approximation of variable fractional delay FIR filters. IET Signal Processing, 1(2), 66–72.

    Article  Google Scholar 

  • Pei, S.-C., Shyu, J.-J., Huang, Y.-D., & Chan, C.-H. (2012). Improved methods for the design of variable fractional-delay IIR digital filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(5), 989–1000.

    Article  MathSciNet  Google Scholar 

  • Soontornwong, P., & Chivapreecha, S. (2015). Pascal-interpolation-based noninteger delay filter and low-complexity realization. Radioengineering, 24(4), 1002–1012.

    Article  Google Scholar 

  • Tseng, C.-C., & Lee, S.-L. (2012). Design of fractional delay filter using Hermite interpolation method. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(7), 1458–1471.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Bo Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, TB. Convergent method for designing high-accuracy bi-equiripple variable-delay filters using new delay-error expression. Multidim Syst Sign Process 30, 343–361 (2019). https://doi.org/10.1007/s11045-018-0559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0559-3

Keywords

Navigation