Skip to main content
Log in

Near-field coherent source localization by planar array design

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with near-field source localization for scenarios where coherent narrowband sources exist. In this paper, we propose a new method in which we design a general planar array with a covariance matrix whose rank is not decreased by the coherence between sources. Moreover, conditions for the sensor locations in the designed planar array are derived to reach maximum effective array aperture. The proposed method uses second order statistics and features a separable range-bearing search to reduce the computational complexity. This method localizes near-field sources with a number of one-dimensional searches in two steps. In the first step, ranges of sources is estimated using one 1D search and in the second step, the bearing of each signal source is estimated using the corresponding range estimated in the first step. Simulation results show that the performance of the proposed method is comparable with the Cramer–Rao bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Challa, R. N., & Shamsunder, S. (1995). High-order subspace-based algorithms for passive localization of near-field sources. In 1995 Conference record of the twenty-ninth Asilomar conference on signals, systems and computers, 1995 (Vol. 2, pp. 777–781). IEEE.

  • Chevalier, P., Ferréol, A., & Albera, L. (2006). High-resolution direction finding from higher order statistics: The 2Q-MUSIC algorithm. IEEE Transactions on Signal Processing, 54(8), 2986–2997.

    Article  MATH  Google Scholar 

  • Choi, Y. H. (2002). On conditions for the rank restoration in forward/backward spatial smoothing. IEEE Transactions on Signal Processing, 50(11), 2900–2901.

    Article  Google Scholar 

  • Choi, Y. H. (2010). ESPRIT-based coherent source localization with forward and backward vectors. IEEE Transactions on Signal Processing, 58(12), 6416–6420.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreol, A., Larzabal, P., & Viberg, M. (2006). On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: Case of MUSIC. IEEE Transactions on Signal Processing, 54(3), 907–920.

    Article  MATH  Google Scholar 

  • Grosicki, E., Abed-Meraim, K., & Hua, Y. (2005). A weighted linear prediction method for near-field source localization. IEEE Transactions on Signal Processing, 53(10), 3651–3660.

    Article  MathSciNet  MATH  Google Scholar 

  • Haardt, M., Challa, R. N., & Shamsunder, S. (1996). Improved bearing and range estimation via high-order subspace based Unitary ESPRIT. In Conference record of the thirtieth Asilomar conference on signals, systems and computers, 1996 (Vol. 1, pp. 380–384). IEEE.

  • Han, F. M., & Zhang, X. D. (2005). An ESPRIT-like algorithm for coherent DOA estimation. IEEE Antennas and Wireless Propagation Letters, 4(1), 443–446.

    Google Scholar 

  • He, J., Swamy, M. N. S., & Ahmad, M. O. (2012). Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources. IEEE Transactions on Signal Processing, 60(4), 2066–2070.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, Y. D., & Barkat, M. (1991). Near-field multiple source localization by passive sensor array. IEEE Transactions on Antennas and Propagation, 39(7), 968–975.

    Article  Google Scholar 

  • Hung, H. S., Chang, S. H., & Wu, C. H. (1998). Near-field source localization using MUSIC with polynomial rooting. Journal of Marine Science and Technology, 6(1), 1–7.

    Google Scholar 

  • Jaffer, A. G. (1988). Maximum likelihood direction finding of stochastic sources: A separable solution. In 1988 International conference on acoustics, speech, and signal processing, 1988. ICASSP-88 (pp. 2893–2896). IEEE.

  • Jiang, J. J., Duan, F. J., Chen, J., Li, Y. C., & Hua, X. N. (2013). Mixed near-field and far-field sources localization using the uniform linear sensor array. IEEE Sensors Journal, 13(8), 3136–3143.

    Article  Google Scholar 

  • Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94.

    Article  Google Scholar 

  • Lee, J. H., & Tung, C. H. (2002). Estimating the bearings of near-field cyclostationary signals. IEEE Transactions on Signal Processing, 50(1), 110–118.

    Article  Google Scholar 

  • Lee, J. H., Chen, Y. M., & Yeh, C. C. (1995). A covariance approximation method for near-field direction-finding using a uniform linear array. IEEE Transactions on Signal Processing, 43(5), 1293–1298.

    Article  Google Scholar 

  • Liang, J., & Liu, D. (2010). Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm. IEEE Transactions on Signal Processing, 58(1), 108–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, B., & Chan, S. C. (2011). DOA estimation of coherent signals for uniform linear arrays with mutual coupling. In 2011 IEEE international symposium on circuits and systems (ISCAS) (pp. 377–380). IEEE.

  • Ma, W. K., Hsieh, T. H., & Chi, C. Y. (2010). DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri–Rao subspace approach. IEEE Transactions on Signal Processing, 58(4), 2168–2180.

    Article  MathSciNet  MATH  Google Scholar 

  • Noh, H., & Lee, C. (2015). A covariance approximation method for near-field coherent sources localization using uniform linear array. IEEE Journal of Oceanic Engineering, 40(1), 187–195.

    Article  Google Scholar 

  • Roy, R., & Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7), 984–995.

    Article  MATH  Google Scholar 

  • Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  • Shan, T. J., Wax, M., & Kailath, T. (1985). On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(4), 806–811.

    Article  Google Scholar 

  • Stoica, P., Larsson, E. G., & Gershman, A. B. (2001). The stochastic CRB for array processing: A textbook derivation. IEEE Signal Processing Letters, 8(5), 148–150.

    Article  Google Scholar 

  • Wang, N., Agathoklis, P., & Antoniou, A. (2006). A new DOA estimation technique based on subarray beamforming. IEEE Transactions on Signal Processing, 54(9), 3279–3290.

    Article  MATH  Google Scholar 

  • Williams, R. T., Prasad, S., Mahalanabis, A. K., & Sibul, L. H. (1988). An improved spatial smoothing technique for bearing estimation in a multipath environment. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(4), 425–432.

    Article  MATH  Google Scholar 

  • Wu, Y., Wang, H., Zhang, Y., & Wang, Y. (2013). Multiple near-field source localisation with uniform circular array. Electronics Letters, 49(24), 1509–1510.

    Article  Google Scholar 

  • Yang, D. S., Shi, J., & Liu, B. S. (2009). DOA estimation for the near-field correlated sources with interpolated array technique. In 4th IEEE conference on industrial electronics and applications, 2009. ICIEA 2009 (pp. 3011–3015). IEEE.

  • Zhi, W., & Chia, M. Y. W. (2007). Near-field source localization via symmetric subarrays. In IEEE international conference on acoustics, speech and signal processing, 2007. ICASSP 2007 (Vol. 2, pp. II–1121). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pourya Behmandpoor.

Appendix

Appendix

Elements of spatial covariance matrix in the far-field case, where a ULA is adopted, is derived in Han and Zhang (2005). Here, for the sake of completeness, we derive the covariance matrix elements, where a general planar array is used, with the existence of near-field or far-field sources.

The \(\left( {l,k} \right) \)th element of covariance matrix is given by

$$\begin{aligned} r\left( {l,k} \right)= & {} E\left\{ {x_l \left( t \right) x_k^*\left( t \right) } \right\} \nonumber \\= & {} E\left\{ {\left[ {\mathop \sum \limits _{v=1}^M s_v \left( t \right) e^{-j\tau _{lv} }+n_l \left( t \right) } \right] \times \left[ {\mathop \sum \limits _{w=1}^M s_w^*\left( t \right) e^{j\tau _{kw} }+n_k^*\left( t \right) } \right] } \right\} \nonumber \\= & {} \mathop \sum \limits _{w=1}^M \mathop \sum \limits _{v=1}^M E\left\{ {s_v \left( t \right) s_w^*\left( t \right) } \right\} e^{-j\tau _{lv} +j\tau _{kw} }+\sigma _n^2 \delta \left( {l,k} \right) \nonumber \\= & {} \mathop \sum \limits _{w=1}^M \mathop \sum \limits _{v=1}^M \sigma _{v,w} e^{-j\tau _{lv} }e^{j\tau _{kw} }+\sigma _n^2 \delta \left( {l,k} \right) ,\quad l,k=1,\ldots ,L \end{aligned}$$
(37)

If we denote

$$\begin{aligned} d_{lw} =\mathop \sum \limits _{v=1}^M \sigma _{v,w} e^{-j\tau _{lv} } \end{aligned}$$
(38)

then the \(\left( {l,k} \right) \)th element of the covariance matrix can be written as

$$\begin{aligned} r\left( {l,k} \right) =\mathop \sum \limits _{w=1}^M d_{lw} e^{j\tau _{kw} }+\sigma _n^2 \delta \left( {l,k} \right) \end{aligned}$$
(39)

where \(\tau _{kw} \), the propagation delay, depends on the array structure and the location of the sources, in general. The \(\left( {l,k} \right) \)th element of the covariance matrix in (14) can be derived by (39) by using the time delay (3) as \(\tau _{kw} \) and \(\tau _{lv} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behmandpoor, P., Haddadi, F. Near-field coherent source localization by planar array design. Multidim Syst Sign Process 30, 219–237 (2019). https://doi.org/10.1007/s11045-018-0552-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0552-x

Keywords

Navigation