Multidimensional Systems and Signal Processing

, Volume 27, Issue 4, pp 1031–1044 | Cite as

Fake modern Chinese painting identification based on spectral–spatial feature fusion on hyperspectral image

  • Zheng Wang
  • Dongying Lu
  • Dong Zhang
  • Meijun Sun
  • Yan Zhou


Chinese painting is famous and valuable for special painting materials, skills and final art effects used, yet this has resulted in many fake paintings being produced. Those fake paintings were normally made by using modern high resolution scanning and printing technology, thus it is very hard to identify the fake ones by human vision. To address this challenging problem, in this paper, a hyperspectral image based features fusion method is proposed. Firstly, we scan Chinese paintings using a visual band hyperspectral camera with the spectral frequency ranging from 400 to 900 nm. Then, the spectral and spatial features are extracted respectively by using the principal component analysis and a convolution neural network. Finally, we fuse these two kinds of features and input the feature set into a support vector machines for classification. All samples of real and fake paintings are obtained from local Chinese painting organization. The experimental result shows the effectiveness of the proposed method with an accuracy achieved of 84.6 %, which is significantly higher than other approaches where only spectral or spatial feature is used.


Hyperspectral image Chinese paintings Fake identification Spectral–spatial feature fusion 


  1. Borengasser, M., Hungate, W. S., & Watkins, R. (2008). Hyperspectral remote sensing-principles and applications (p. 2008). Boca Raton, FL: CRC Press.Google Scholar
  2. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of annual workshop on computational learning theroy, pp. 144–152.Google Scholar
  3. Boureau, Y.-L., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning midlevel features for recog-nition. In Proceedings of IEEE Conference on CVPR, pp. 2559-2566.Google Scholar
  4. Bovolo, F., Bruzzone, L., & Carlin, L. (2010). A novel technique for subpixel image classification based on support vector machine. IEEE Transactions on Image Processing, 19(11), 2983–2999.MathSciNetCrossRefGoogle Scholar
  5. Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using vhr remote sensing images. IEEE Transactions on Geoscience & Remote Sensing, 53(8), 1–12.CrossRefGoogle Scholar
  6. Cheng, G., Han, J. W., Zhou, P. C., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry & Remote Sensing, 98(1), 119132.Google Scholar
  7. Datt, B., McVicar, T. R., Niel, T. G. V., Jupp, D. L. B., & Pearlman, J. S. (2003). Preprocessing eo1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1246–1259.CrossRefGoogle Scholar
  8. Dong, L., Lu, S., & Jin, X. (2014). Real-time image-based chinese ink painting rendering. Multimedia Tools and Applications, 69(3), 605–620.MathSciNetCrossRefGoogle Scholar
  9. Eismann, M. T., Stocker, A. D., & Nasrabadi, N. M. (2009). Automated hyperspectral cueing for civilian search and rescue. Proceedings of IEEE, 97(6), 1031–1055.CrossRefGoogle Scholar
  10. Fan, N. M., Hui, N. M., & Jin, N. M. (2015). A novel method of converting photograph into Chinese ink painting. IEEJ Transactions on Electrical and Electronic Engineering, 10(4), 320–329.Google Scholar
  11. Han, J., He, S., Qian, X., Wang, D., Guo, L., & Liu, T. (2013). An object-oriented visual saliency detection framework based on sparse coding representations. IEEE Transactions on Circuits and Systems for Video Technology, 23(12), 2009–2021.Google Scholar
  12. Han, J., Zhang, D., Cheng, G., Guo, L., & Ren, J. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325–3337.Google Scholar
  13. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2014a). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits & Systems for Video Technology, 25(8), 1–1.Google Scholar
  14. Han, J., Zhang, D., Wen, S., & Guo, L. (2015b). Two-stage learning to predict human eye fixations via SDAEs. IEEE Transactions on Cybernetics, 46(2), 487–498.Google Scholar
  15. Han, J., Zhou, P., Zhang, D., Cheng, G., Guo, L., Liu, Z., et al. (2014b). Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS Journal of Photogrammetry & Remote Sensing, 89(1), 37–48.Google Scholar
  16. Hörig, B., Kühn, F., Oschütz, F., & Lehmann, F. (2001). Hymap hyperspectral remote sensing to detect hydrocarbons. International Journal of Remote Sensing, 22(8), 1413–1422.CrossRefGoogle Scholar
  17. Jin, J., Fu, K., & Zhang, C. (2014). Traffic sign recognition with hinge loss trained convolutional neural networks. IEEE Transaction on Intelligent Transportation Systems, 19(5), 1991–2000.CrossRefGoogle Scholar
  18. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.Google Scholar
  19. Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of ICML, pp. 609-616.Google Scholar
  20. Liu, N., Han, J., Zhang, D., Wen, S., & Liu, T. (2015). Predicting eye fixations using convolutional neural networks. In: CVPR.Google Scholar
  21. Manolakis, D., & Shaw, G. (2002). Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine, 19(1), 29–43.CrossRefGoogle Scholar
  22. Mao, Q., Dong, M., Huang, Z., & Zhan, Y. (2014). Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Transaction on Multimedia, 16(8), 2203–2213.CrossRefGoogle Scholar
  23. Meijun, S., Zheng, W., & Jizhou, S. (2015). What’s wrong with murals at mogao grottoes: a near-infrared hyperspectral image method. Scientific Reports, 5(9), 1–10.Google Scholar
  24. Mishra, P., Herrero-Langreo, A., Roger, J. M., Gorretta, N., Lleó, L., Diezma, B., et al. (2015). Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis. Journal of Near Infrared Spectroscopy, 23(1), 15–22.CrossRefGoogle Scholar
  25. Patel, N. K., Patnaik, C., Dutta, S., Shekh, A. M., & Dave, A. J. (2001). Study of crop growth parameters using airborne imaging spectrometer data. International Journal of Remote Sensing, 22(12), 2401–2411.CrossRefGoogle Scholar
  26. Qiao, T., Ren, J., Craigie, C., Zabalza, Z., Maltin, C., & Marshal, S. (2015). The use of small training sets containingmixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Journal of Applied Spectroscopy, 82(1), 137–144.CrossRefGoogle Scholar
  27. Ren, J., Zabalza, Z., Marshall, S., & Zheng, J. (2014). Effective feature extraction and data reduction with hyperspectral imaging in remote sensing. IEEE Signal Processing Magazine, 31(4), 149–154.Google Scholar
  28. Rokach, L., & Maimon, O. (2005). Top-down induction of decision trees classifiers: A survey. IEEE Transactions on Systems, 35(4), 476–487.Google Scholar
  29. Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.MATHGoogle Scholar
  30. Stein, D. W. J., Beaven, S. G., Hoff, L. E., & Winter, E. M. (2002). Anomaly detection from hyperspectral imagery. IEEE Signal Processing Magazine, 19(1), 58–69.CrossRefGoogle Scholar
  31. Sun, Y., Tao, X., Li, Y., & Lu, J. (2015). Robust 2D principal component analysis: A structured sparsity regularized approach. IEEE Transactions on Image Processing, 24(8), 2515–2526.MathSciNetCrossRefGoogle Scholar
  32. Vapnik, V. N. (1995). The nature of statistical learning theory. Neural Networks IEEE Transactions on, 10(5), 988–999.MathSciNetCrossRefMATHGoogle Scholar
  33. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality constrained linear coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 3360-3367.Google Scholar
  34. Yahong, H., Yi, Y., Fei, W., Richang, H. (2015a). Compact and discriminative descriptor inference using multi-cues. IEEE Transactions on Image Processing, 24(12), 5114–5126.Google Scholar
  35. Yahong, H., Yi, Y., Yan, Y., Zhigang, M., Nicu, S., Xiaofang, Z. (2015b). Semisupervised feature selection via spline regression for video semantic recognition. IEEE Transactions on Neural Networks and Learning Systems, 26(2), 252–264.Google Scholar
  36. Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of IEEE conference on CVPR, pp. 1794- 801.Google Scholar
  37. Zhang, D., Han, J., Cheng, G., Liu, Z., Bu, S., & Guo, L. (2015). Weakly supervised learning for target detection in remote sensing images. IEEE Geoscience and Remote Sensing Letters, 12(4), 701–705.CrossRefGoogle Scholar
  38. Zhang, Y., Miao, Z., Liu, Y., & Zhou, W. (2012). An Ink-diffusion-based rendering method For Chinese ink painting. 4th international conference on digital image processing (ICDIP).Google Scholar
  39. Zabalza, J., Ren, J., Zheng, J., Han, J., Zhao, H., Li, S., et al. (2015). Novel two dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 1–16.CrossRefGoogle Scholar
  40. Zheng, W., & Meijun, S. (2012). Automatically fast determining of feature number of ranking-based feature selection. Electronics Letters, 48(23), 1462–1463.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zheng Wang
    • 1
  • Dongying Lu
    • 1
  • Dong Zhang
    • 1
  • Meijun Sun
    • 1
  • Yan Zhou
    • 2
  1. 1.School of Computer SoftwareTianjin UniversityTianjinChina
  2. 2.Department of Computer ScienceFoshan UniversityFoshanChina

Personalised recommendations