Advertisement

Multidimensional Systems and Signal Processing

, Volume 28, Issue 1, pp 183–205 | Cite as

A new direction-of-arrival estimation method exploiting signal structure information

  • Bo Lin
  • Jiying Liu
  • Meihua Xie
  • Jubo Zhu
  • Fengxia Yan
Article

Abstract

A new method is proposed to estimate the direction-of-arrival (DOA) based on uniform linear array sampling and named as sparsity and temporal correlation exploiting (SaTC-E). By exploiting the structure information of source signals, including spatial sparsity and temporal correlation of sources, SaTC-E accomplishes DOA estimation with superior performance via block sparse bayesian learning methodology and grid refined strategy. SaTC-E is applicable into time-varying manifold scenario, such as wideband sources, time-varying array, provided that the array manifold matrix is determinable. It has improved performance with some other merits, including superior resolution, requirement for a few snapshots, no knowledge of source number, and applicability to spatially and temporally corrected sources. Real data tests and numerical simulations are carried out to demonstrate the advantages of SaTC-E.

Keywords

Direction-of-arrival (DOA) estimation Block sparse bayesian learning (BSBL) Temporal correlation Spatial joint sparsity Grid refined strategy 

References

  1. Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–124.CrossRefGoogle Scholar
  2. Candes, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.CrossRefMATHMathSciNetGoogle Scholar
  3. Carlin, M., Rocca, P., Oliveri, G., et al. (2013). Directions-of-arrival estimation through bayesian compressive sensing strategies. IEEE Transactions on Antennas and Propagation, 61(7), 3828–3838.CrossRefMathSciNetGoogle Scholar
  4. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological), 39(1), 1–38.MATHMathSciNetGoogle Scholar
  5. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.CrossRefMATHMathSciNetGoogle Scholar
  6. Du, X. P., & Cheng, L. Z. (2014). Three stochastic measurement schemes for direction-of-arrival estimation using compressed sensing method. Multidimensional Systems and Signal Processing, 25(4), 621–636.CrossRefMATHGoogle Scholar
  7. Eldar, Y., & Mishali, M. (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory, 55(11), 5302–5316.CrossRefMathSciNetGoogle Scholar
  8. Guo, X. S., Wan, Qun, Chang, C. Q., & Lam, E. Y. (2010). Source localization using a sparse representation framework to achieve superresolution. Multidimensional Systems and Signal Processing, 21(4), 391–402.CrossRefMATHMathSciNetGoogle Scholar
  9. Hyder, M., & Mahata, K. (2010). Direction-of-arrival estimation using a mixed \(l_{2,0}\) norm approximation. IEEE Transactions on Signal Processing, 58(9), 4646–4655.CrossRefMathSciNetGoogle Scholar
  10. Kim, J., Lee, O., & Ye, J. (2012). Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing. IEEE Transactions on Information Theory, 58(1), 278–301.CrossRefMathSciNetGoogle Scholar
  11. Liu, Z., Huang, Z., & Zhou, Y. (2012). An efficient maximum likelihood method for direction-of-arrival estimation via sparse bayesian learning. IEEE Transactions on Wireless Communications, 11(10), 3607–3617.Google Scholar
  12. Malioutov, D., Cetin, M., & Willsky, A. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.CrossRefMathSciNetGoogle Scholar
  13. Northardt, E., Bilik, I., & Abramovich, Y. (2013). Spatial compressive sensing for direciton-of-arrival estimation with bias mitigation via expected likelihood. IEEE Transactions on Signal Processing, 61(5), 1183–1195.CrossRefMathSciNetGoogle Scholar
  14. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.CrossRefMathSciNetGoogle Scholar
  15. Stoica, P., & Nehorai, A. (1989). MUSIC, maximum likelihood and Cramer–Rao bound. IEEE Transactions on Acoustics Speech and Signal Processing, 37(5), 720–741.CrossRefMATHMathSciNetGoogle Scholar
  16. Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211–244.MATHMathSciNetGoogle Scholar
  17. Valaee, S., & Kabal, P. (1995). Wideband array processing using a two-side correlation transformation. IEEE Transactions on Signal Processing, 43(1), 160–172.CrossRefGoogle Scholar
  18. Wan, J., Zhang, Z., Yan, J., et al. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR) (pp. 940–947), Providence, Rhode Island, June 2012.Google Scholar
  19. Wang, H., & Kaveh, M. (1985). Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources. IEEE Transactions on Acoustics Speech and Signal Processing, 33(4), 823–831.CrossRefGoogle Scholar
  20. Wipf, D., Rao, B., & Nagarajan, S. (2011). Latent variable Bayesian models for promoting sparsity. IEEE Transactions on Information Theory, 57(9), 6236–6255.CrossRefMathSciNetGoogle Scholar
  21. Zhang, Z., Jung, T., Makeig, S., et al. (2013). Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Transactions on Biomedical Engineering, 60(1), 221–224.CrossRefGoogle Scholar
  22. Zhang, Z., Jung, T., Makeig, S., et al. (2013). Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse bayesian learning. IEEE Transactions on Biomedical Engineering, 60(2), 300–309.CrossRefGoogle Scholar
  23. Zhang, Z., & Rao, B. (2011). Sparse signal recovery with temporally correlated source vectors using sparse bayesian learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912–926.CrossRefGoogle Scholar
  24. Zhang, Z., & Rao, B. (2013). Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Transactions on Signal Processing, 61(8), 2009–2015.CrossRefGoogle Scholar
  25. Zhu, W., & Chen, B. X. (2015). Novel methods of DOA estimation based on compressed sensing. Multidimensional Systems and Signal Processing, 26(1), 113–123.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bo Lin
    • 1
  • Jiying Liu
    • 1
  • Meihua Xie
    • 1
  • Jubo Zhu
    • 1
  • Fengxia Yan
    • 1
  1. 1.College of ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations