Advertisement

A novel spatially spread electromagnetic vector sensor for high-accuracy 2-D DOA estimation

  • Guimei Zheng
Article

Abstract

In this paper, a new spatially spread electromagnetic vector sensor (SS-EMVS) is proposed by a two-step design. In addition, a novel DOA estimator with coarse-fine estimate combination is presented for the proposed array. The first step aims to make the configurations of SS-EMVS satisfy the “vector cross-product” estimator, leading to a coarse estimation of three direction-cosines. The second step focuses on extending the two dimensional (2-D) array apertures of SS-EMVS, resulting in two fine but ambiguous estimations on the direction-cosines by extracting inter-sensor phase-delay. Combination the coarse and fine estimations, the high-accuracy 2-D DOA estimation can be obtained by using the coarse estimation to disambiguate the fine estimation. The three- dipoles and loops of the proposed configuration are located separately, which are found to reduce mutual coupling as compared with collocated EMVS. Moreover, the new configuration is able to extend 2-D array aperture to improve the accuracy of 2-D direction-finding. Numerical Simulations are conducted to demonstrate the effectiveness of the proposed algorithm.

Keywords

Mutual coupling Aperture antennas Direction-of-arrival estimation Polarization 

References

  1. Au Yeung, C. K., & Wong, K. T. (2009). CRB: Sinusoid-sources’ estimation using collocated dipoles/loops. IEEE Transactions on Aerospace and Electronic Systems, 45(1), 94–109.CrossRefGoogle Scholar
  2. Bihan, N. L., & Mars, J. (2004). Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Processing, 84(7), 1177–1199.MATHCrossRefGoogle Scholar
  3. Bihan, N. L., Miron, S., & Mars, J. (2007). MUSIC algorithm for vector-sensors array using biquaternions. IEEE Transactions on Signal Processing, 55(9), 4523–4533.CrossRefMathSciNetGoogle Scholar
  4. Cao, J (2014). Survey on acoustic vector sensor and its applications in signal processing. In proceedings of the 33rd Chinese Control Conference (CCC2014), pp. 7456–7461, Nanjing, China, Jul. 28–30.Google Scholar
  5. Cao, J., Khong, AW., & Gannot, S (2014). On the performance of widely linear Quaternion based MVDR beamformer for an acoustic vector sensor. In proceedings of the international workshop on acoustic signal enhancement (IWAENC 2014), Juan les Pins, French Riviera, Sep. 8–11.Google Scholar
  6. Cao, Jiuwen, & Lin, Zhiping. (2014). Bayesian signal detection with compressed measurements. Information Sciences, 289, 241–253.CrossRefGoogle Scholar
  7. Chiu, C. Y., Yan, J. B., Murch, R. D., et al. (2009). Design and implementation of a compact 6-port antenna. IEEE Antennas and Wireless Propagation Letters, 8, 767–770.CrossRefGoogle Scholar
  8. Gong, X. F., Liu, Z. W., & Xu, Y. G. (2008). Quad-quaternion MUSIC for DOA estimation using electromagnetic vector sensors. EURASIP Journal on Advances in Signal Processing, 2008, 1–14.MATHCrossRefGoogle Scholar
  9. Gong, X. F., Liu, Z. W., & Xu, Y. G. (2011). Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor. IET Signal Processing, 5(4), 390–396.CrossRefGoogle Scholar
  10. Gong, X. F., Liu, Z. W., & Xu, Y. G. (2011). Coherent source localization: Bicomplex polarimetric smoothing with electromagnetic vector-sensors. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 2268–2285.CrossRefGoogle Scholar
  11. Gong, X. F., Liu, Z. W., & Xu, Y. G. (2011). Direction finding via biquaternion matrix diagonalization with vector-sensors. Signal Processing, 91(4), 821–831.MATHCrossRefGoogle Scholar
  12. Gu, C., He, J., Li, H., et al. (2013). Target localization using MIMO electromagnetic vector array systems. Signal Processing, 93(7), 2103–2107.CrossRefGoogle Scholar
  13. Guo, X., Miron, S., Brie, D., et al. (2011). A CANDECOMP/PARAFAC perspective on uniqueness of DOA estimation using a vector sensor array. IEEE Transactions on Signal Processing, 59(7), 3475–3481.CrossRefMathSciNetGoogle Scholar
  14. He, J., & Liu, Z. (2009). Computationally efficient 2D direction finding and polarization estimation with arbitrarily spaced electromagnetic vector sensors at unknown locations using the propagator method. Digital Signal Processing, 19(3), 491–503.CrossRefGoogle Scholar
  15. He, J., Jiang, S., Wang, J., et al. (2010). Polarization difference smoothing for direction finding of coherent signals. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 469–480.CrossRefGoogle Scholar
  16. Ho, K. C., Tan, K. C., & Ser, W. (1995). An investigation on number of signals whose directions of arrival are uniquely determinable with an electromagnetic vector sensor. Signal Processing, 47(1), 41–54.MATHCrossRefGoogle Scholar
  17. Hurtado, M., & Nehorai, A. (2007). Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems, 43(2), 780–789.CrossRefGoogle Scholar
  18. Ko, C. C., Zhang, J., & Nehorai, A. (2002). Separation and tracking of multiple broadband sources with one electromagnetic vector sensor. IEEE Transactions on Aerospace and Electronic Systems, 38(3), 1109–1116.CrossRefGoogle Scholar
  19. Lemma, A. N., Veen, A. J., & Deprettere, E. F. (1999). Multiresolution ESPRIT algorithm. IEEE Transactions on Signal Processing, 47(6), 1722–1726.CrossRefGoogle Scholar
  20. Li, Yang, & Zhang, Jianqiu. (2013). An Enumerative NonLinear Programming approach to direction finding with a general spatially spread electromagnetic vector sensor array. Signal Processing, 93(4), 856–865.CrossRefGoogle Scholar
  21. Liang, J., Liu, D., & Zhang, J. (2009). Joint frequency, 2-D DOA, and polarization estimation using parallel factor analysis. Science in China Series F Information Sciences, 52(10), 1891–1904.MATHCrossRefGoogle Scholar
  22. Luo, F., & Yuan, X. (2012). Enhanced “vector-cross-product” direction-finding using a constrained sparse triangular-array. EURASIP Journal on Advances in Signal Processing, 2012, 115. doi: 10.1186/1687-6180-2012-115.CrossRefGoogle Scholar
  23. Miron, S., Bihan, N. L., & Mars, J. (2006). Quaternion-MUSIC for vector-sensor array processing. IEEE Transactions on Signal Processing, 54(4), 1218–1229.CrossRefGoogle Scholar
  24. Monte, L. L., Elnour, B., Erricolo, D. (2007). Distributed 6D vector antennas design for direction of arrival application. IEEE international conference on electromagnetics in advanced applications, pp. 431–434.Google Scholar
  25. Monte, L. L., Elnour, B., Erricolo, D., et al. (2007). Design and realization of a distributed vector sensor for polarization diversity applications. IEEE international waveform diversity and design conference, pp. 358–361.Google Scholar
  26. Nehorai, A., & Paldi, E. (1994). Vector-sensor array processing for electromagnetic source localization. IEEE Transactions on Signal Processing, 42(2), 376–398.CrossRefGoogle Scholar
  27. Nehorai, A., & Tichavsky, P. (1999). Cross-product algorithms for source tracking using an EM vector sensor. IEEE Transactions on Signal Processing, 47(10), 2863–2867.CrossRefGoogle Scholar
  28. Rahamim, D., Tabrikian, J., & Shavit, R. (2004). Source localization using vector sensor array in a multipath environment. IEEE Transactions on Signal Processing, 52(11), 3096–3103.CrossRefGoogle Scholar
  29. See, C. M. S., & Nehorai, A. (2003). Source localization with distributed electromagnetic component sensor array processing. IEEE 7th international symposium on signal processing and its applications, pp. 177–180.Google Scholar
  30. Tan, K. C., Ho, K. C., & Nehorai, A. (1996). Linear independence of steering vectors of an electromagnetic vector sensor. IEEE Transactions on Signal Processing, 44(12), 3099–3107.CrossRefGoogle Scholar
  31. Tan, K. C., Ho, K. C., & Nehorai, A. (1996). Uniqueness study of measurements obtainable with arrays of electromagnetic vector sensors. IEEE Transactions on Signal Processing, 44(4), 1036–1039.CrossRefGoogle Scholar
  32. Trees, H. L. (2002). Detection, estimation, and modulation theory, Part IV: Optimum array processing. New York: Wiley.Google Scholar
  33. Wong, K. T., & Zoltowski, M. D. (1997). Uni-vector-sensor ESPRIT for multi-source azimuth, elevation, and polarization estimation. IEEE Transactions on Antennas and Propagation, 45(10), 1467–1474.CrossRefGoogle Scholar
  34. Wong, K. T., & Zoltowski, M. D. (2000). Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Transactions on Antennas and Propagation, 48(8), 1235–1245.CrossRefGoogle Scholar
  35. Wong, K. T., & Zoltowski, M. D. (2000). Closed-form direction-finding with arbitrarily spaced electromagnetic vector-sensors at unknown locations. IEEE Transactions on Antennas and Propagation, 48(5), 671–681.CrossRefGoogle Scholar
  36. Wong, K. T. (2001). Geolocation/beamforming for multiple wideband-FFH with unknown hop sequences. IEEE Transactions on Aerospace and Electronic System, 37(1), 65–76.CrossRefGoogle Scholar
  37. Wong, K. T. (2001). Direction finding/polarization estimation–dipole and/or loop triad(s). IEEE Transactions on Aerospace and Electronic Systems, 37(2), 679–684.CrossRefGoogle Scholar
  38. Wong, K. T., & Yuan, X. (2011). ’Vector cross-product direction-finding’ with an electromagnetic vector-sensor of six orthogonally oriented but spatially non-collocating dipoles/loops. IEEE Transactions on Signal Processing, 59(1), 160–171.CrossRefMathSciNetGoogle Scholar
  39. Xu, Y., & Liu, Z. (2007). Polarimetric angular smoothing algorithm for an electromagnetic vector sensor array. IET Radar Sonar Navigation, 1(3), 230–240.CrossRefGoogle Scholar
  40. Yuan, X. (2012). Diversely polarized antenna-array signal processing. Ph.D. dissertation, Hong Kong, The Hong Kong Polytechnic University.Google Scholar
  41. Yuan, X. (2012). Polynomial-phase signal source-tracking using an electromagnetic vector-sensor. IEEE 37th international conference on acoustics, speech and signal processing, pp. 2577–2580.Google Scholar
  42. Yuan, X. (2012). Quad compositions of collocated dipoles and loops: For direction finding and polarization estimation. IEEE Antennas and Wireless Propagation Letters, 11, 1044–1047.CrossRefGoogle Scholar
  43. Yuan, X. (2012). Estimating the DOA and the polarization of a polynomial-phase signal using a single polarized vector-sensor. IEEE Transactions on Signal Processing, 60(3), 1270–1282.CrossRefMathSciNetGoogle Scholar
  44. Yuan, X., Wong, K. T., & Agrawal, K. (2012). Polarization estimation with a dipole-dipole pair, a dipole-loop pair, or a loop-loop pair of various orientations. IEEE Transactions on Antennas and Propagation, 60(5), 2442–2452.CrossRefMathSciNetGoogle Scholar
  45. Yuan, X., Wong, K. T., Xu, Z., et al. (2012). Various triads of collocated dipoles/loops, for direction finding and polarization estimation. IEEE Sensors Journal, 12(6), 1763–1771.CrossRefGoogle Scholar
  46. Zoltowski, M. D., & Wong, K. T. (2000). ESPRIT-based 2-D direction finding with a sparse array of electromagnetic vector-sensors. IEEE Transactions on Signal Processing, 48(8), 2195–2204.CrossRefGoogle Scholar
  47. Zoltowski, M. D., & Wong, K. T. (2000). Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform rectangular array grid. IEEE Transactions on Signal Processing, 48(8), 2205–2210.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Air and Missile Defense CollegeAir Force Engineering University (AFEU)Xi’anPeople’s Republic of China

Personalised recommendations