Skip to main content
Log in

A novel legitimacy preserving data hiding scheme based on LAS compressed code of VQ index tables

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Data hiding is a technique for secret and secure data storing and transmission that embeds data into a media such as an image, audio, video and so on, with minimal quality degradation of the media. Some developed data hiding schemes are reversible. Reversibility property allows the media to be recovered completely after extraction of the embedded data. Vector Quantization (VQ)-based image data hiding is one of the most popular study areas in the literature. However, most VQ-based reversible data hiding schemes generate non-legitimate codes as output. In other words output codes generated by such schemes could not be decoded by the conventional VQ or VQ based decoders and may arouse the attention of interceptors. On the other hand, the existing VQ based reversible data hiding schemes that generate legitimate VQ codes as output, suffer from low capacity and poor quality of stego-image. In this paper a novel reversible data hiding scheme for VQ-compressed images based on locally adaptive data compression scheme (LAS) is proposed. Unlike other schemes, the proposed scheme doesn’t change the VQ indices; data is embedded by choosing one of the possible ways to encode each index. As a result, in comparison with the schemes that embed data by index replacement, in the proposed scheme no extra distortion is made by data embedding and the outputted codes are compatible with the conventional LAS decoder. These properties help to hide the existence of secret data and make the scheme suitable for steganography. Moreover, a framework to combine the proposed scheme with some other schemes to improve their capacity and embedding side information is proposed. Since LAS is a general data compression scheme, the proposed scheme could be used to embed data into any data formats. All existing LAS based data hiding schemes produce non-legitimate codes as their outputs and the proposed scheme is the first and only one that produces legitimate codes as output. Experimental results show that the proposed scheme outperforms the existing LAS based schemes and some other VQ based data hiding schemes. On average, the proposed scheme embeds 2.14 bits per index with almost the same bit-rate as the bit-rate of the VQ index table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bentley, J. L., Sleator, D. D., Tarjan, R. E., & Wei, V. K. (1986). A locally adaptive data compression scheme. Communications of the ACM, 29(4), 320–330. doi:10.1145/5684.5688.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, C. C., Sung, C. H., & Chen, T. S. (1997). A locally adaptive scheme for image index compression. In Proceedings of the 1997 Conference on Computer Vision, Graphics, and Image Processing, Taichung,Taiwan, 1997, (pp. 93–99).

  • Chang, C. C., Tai, W. L., & Lin, C. C. (2006). A reversible data hiding scheme based on side match vector quantization. IEEE Transactions on Circuits and Systems for Video Technology, 16(10), 1301–1308. doi:10.1109/TCSVT.2006.882380.

    Article  Google Scholar 

  • Chang, C. C., & Lin, C. Y. (2006). Reversible steganography for VQ-compressed images using side matching and relocation. IEEE Transactions on Information Forensics and Security, 1(4), 493–501. doi:10.1109/TIFS.2006.885034.

    Article  MathSciNet  Google Scholar 

  • Chang, C. C., Hsieh, Y. P., & Lin, C. Y. (2007a). Lossless data embedding with high embedding capacity based on declustering for VQ-compressed codes. IEEE Transactions on Information Forensics and Security, 2(3), 341–349. doi:10.1109/TIFS.2007.902683.

  • Chang, C. C., Lin, C. C., Tseng, C. S., & Tai, W. L. (2007b). Reversible hiding in DCT-based compressed images. Information Sciences, 177(13), 2768–2786. doi:10.1016/j.ins.2007.02.019.

  • Chang, C. C., Kieu, T. D., & Chou, Y. C. (2009). Reversible information hiding for VQ indices based on locally adaptive coding. Journal of Visual Communication and Image Representation, 20(1), 57–64. doi:10.1016/j.jvcir.2008.08.005.

    Article  Google Scholar 

  • Chang, C. C., Nguyen, T. S., & Lin, C. C. (2011). A reversible data hiding scheme for VQ indices using locally adaptive coding. Journal of Visual Communication and Image Representation, 22(7), 664–672. doi:10.1016/j.jvcir.2011.06.005.

    Article  Google Scholar 

  • Chang, C. C., Lin, C. Y., & Hsieh, Y. P. (2012). Data hiding for vector quantization images using mixed-base notation and dissimilar patterns without loss of fidelity. Information Sciences, 201, 70–79. doi:10.1016/j.ins.2011.12.025.

    Article  Google Scholar 

  • Chang, C. C., Chen, K. N., Wang, Z. H., & Li, M. C. (2013). Lossless information hiding in the VQ index table. Journal of Software, 8(3), 547–553. doi:10.4304/jsw.8.3.547-553.

    Article  Google Scholar 

  • Chen, W. J., & Huang, W. T. (2009). VQ indexes compression and information hiding using hybrid lossless index coding. Digital Signal Processing, 19(3), 433–443. doi:10.1016/j.dsp.2008.11.003.

    Article  Google Scholar 

  • Chiang, Y. K., & Tsai, P. (2008). Steganography using overlapping codebook partition. Signal Processing, 88(5), 1203–1215. doi:10.1016/j.sigpro.2007.11.009.

    Article  MATH  Google Scholar 

  • Du, W. C., & Hsu, W. J. (2003). Adaptive data hiding based on VQ compressed images. IEE Proceedings on Vision, Image and Signal Processing, 150(4), 233–238. doi:10.1049/ip-vis:20030525.

    Article  Google Scholar 

  • Gray, R. M. (1984). Vector quantization. IEEE Acoustics, Speech and Signal Processing Magazine, 1(2), 4–29. doi:10.1109/MASSP.1984.1162229.

    Google Scholar 

  • Hsieh, C. H., & Tsai, J. C. (1996). Lossless compression of VQ index with search-order coding. IEEE Transactions on Image Processing, 5(11), 1579–1582. doi:10.1109/83.541428.

    Article  MathSciNet  Google Scholar 

  • Jo, M., & Kim, H. D. (2002). A digital image watermarking scheme based on vector quantization. IEICE Transactions on Information and Systems, E85–D(6), 1054–1056.

    Google Scholar 

  • Kim, T. (1992). Side match and overlap match vector quantizers for images. IEEE Transactions on Image Processing, 1(2), 170–185. doi:10.1109/83.136594.

    Article  Google Scholar 

  • Lee, S., Yoo, C. D., & Kalker, T. (2007). Reversible image watermarking based on integer-to-integer wavelet transform. IEEE Transactions on Information Forensics and Security, 2(3), 321–330. doi:10.1109/TIFS.2007.905146.

    Article  Google Scholar 

  • Lee, C. F., Chen, H. L., & Lai, S. H. (2010). An adaptive data hiding scheme with high embedding capacity and visual image quality based on SMVQ prediction through classification codebooks. Image and Vision Computing, 28(8), 1293–1302. doi:10.1016/j.imavis.2010.01.006.

    Article  Google Scholar 

  • Lee, J. D., Chiou, Y. H., & Guo, J. M. (2013). Lossless data hiding for VQ indices based on neighboring correlation. Information Sciences, 221, 419–438. doi:10.1016/j.ins.2012.09.020.

    Article  Google Scholar 

  • Lin, C. C., Chen, S. C., & Hsueh, N. L. (2009). Adaptive embedding techniques for VQ-compressed images. Information Sciences, 179(1–2), 140–149. doi:10.1016/j.ins.2008.09.001.

    Article  Google Scholar 

  • Linde, Y., Buzo, A., & Gray, R. M. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28(1), 84–95. doi:10.1109/TCOM.1980.1094577.

    Article  Google Scholar 

  • Lu, Z. M., Wang, J. X., & Liu, B. B. (2009). An improved lossless data hiding scheme based on image VQ-index residual value coding. Journal of Systems and Software, 82(6), 1016–1024. doi:10.1016/j.jss.2009.01.010.

    Article  Google Scholar 

  • Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3), 354–362. doi:10.1109/TCSVT.2006.869964.

    Article  Google Scholar 

  • Pan, Z., Ma, X., Deng, X., & Hu, S. (2013). Low bit-rate information hiding method based on search-order-coding technique. Journal of Systems and Software, 86(11), 2863–2869. doi:10.1016/j.jss.2013.06.066.

    Article  Google Scholar 

  • Qin, C., Chang, C. C., & Chen, Y. C. (2013). Efficient reversible data hiding for VQ-compressed images based on index mapping mechanism. Signal Processing, 93(9), 2687–2695. doi:10.1016/j.sigpro.2013.03.036.

    Article  Google Scholar 

  • Rahmani, P., & Dastghaibyfard, G. (2012). Reversible data hiding for VQ-compressed images based on an index replacement technique. International Journal of Computer and Electrical Engineering, 4(3), 359–362.

    Article  Google Scholar 

  • Rahmani, P., & Dastghaibyfard, G. (2014). A low distortion reversible data hiding scheme for search order coding of VQ indices. Multimedia Tools and Applications. doi:10.1007/s11042-014-2200-2.

  • Rahmani, P., Dastghaibyfard, G., & Rahmani, E. (2011b). A reversible data embedding scheme based on search order coding for VQ index tables. In Proceedings of 8th International ISC Conference on Information Security and Cryptography, Mashhad, Iran, 2011, (pp. 79–82), doi:10.1109/ISCISC.2011.6062332.

  • Rahmani, P., Rahmani, E., & Dastghaibyfard, G. (2011a). A location map free reversible data hiding scheme for VQ-compressed images based on search order coding. In Proceedings of Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Dalian, China, 2011, (pp. 189–192). doi:10.1109/IIHMSP.2011.75.

  • Shen, J. J., & Ren, J. M. (2010). A robust associative watermarking technique based on vector quantization. Digital Signal Processing, 20(5), 1408–1423. doi:10.1016/j.dsp.2009.10.015.

    Article  Google Scholar 

  • Shie, S. C., & Lin, S. D. (2009). Data hiding based on compressed VQ indices of images. Computer Standards & Interfaces, 31(6), 1143–1149. doi:10.1016/j.csi.2008.12.003.

    Article  Google Scholar 

  • Tian, J. (2003). Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 890–896. doi:10.1109/TCSVT.2003.815962.

    Article  Google Scholar 

  • Tsai, Y. S., & Tsai, P. (2011). Adaptive data hiding for vector quantization images based on overlapping codeword clustering. Information Sciences, 181(15), 3188–3198. doi:10.1016/j.ins.2011.03.017.

    Article  Google Scholar 

  • Wang, F. H., Jain, L. C., & Pan, J. S. (2007). VQ-based watermarking scheme with genetic codebook partition. Journal of Network and Computer Applications, 30(1), 4–23. doi:10.1016/j.jnca.2005.08.002.

    Article  Google Scholar 

  • Wang, J. X., & Lu, Z. M. (2009). A path optional lossless data hiding scheme based on VQ joint neighboring coding. Information Sciences, 179(19), 3332–3348. doi:10.1016/j.ins.2009.05.021.

    Article  Google Scholar 

  • Wang, W. J., Huang, C. T., Liu, C. M., Su, P. C., & Wang, S. J. (2013). Data embedding for vector quantization image processing on the basis of adjoining state-codebook mapping. Information Sciences, 246, 69–82. doi:10.1016/j.ins.2013.05.007.

    Article  MathSciNet  Google Scholar 

  • Yang, C. H., & Lin, Y. C. (2009). Reversible data hiding of a VQ index table based on referred counts. Journal of Visual Communication and Image Representation, 20(6), 399–407. doi:10.1016/j.jvcir.2009.04.001.

    Article  Google Scholar 

  • Yang, C. H., & Lin, Y. C. (2010). Fractal curves to improve the reversible data embedding for VQ-indexes based on locally adaptive coding. Journal of Visual Communication and Image Representation, 21(4), 334–342. doi:10.1016/j.jvcir.2010.02.008.

    Article  Google Scholar 

  • Yang, C. H., Wang, W. J., Huang, C. T., & Wang, S. J. (2011a). Reversible steganography based on side match and hit pattern for VQ-compressed images. Information Sciences, 181(11), 2218–2230. doi:10.1016/j.ins.2011.01.015.

  • Yang, C. H., Wu, S. C., Huang, S. C., & Lin, Y. K. (2011b). Huffman-code strategies to improve MFCVQ-based reversible data hiding for VQ indexes. Journal of Systems and Software, 84(3), 388–396. doi:10.1016/j.jss.2010.11.924.

  • Yue, S., Wang, Z. H., & Chang, C. C. (2013). An image data hiding scheme based on vector quantization and graph coloring. Recent Advances in Information Hiding and Applications, 40, 1–17. doi:10.1007/978-3-642-28580-6_1.

  • Zhang, X., & Wang, S. (2005). Steganography using multiple-base notational system and human vision sensitivity. IEEE Signal Processing Letters, 12(1), 67–70. doi:10.1109/LSP.2004.838214.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would say thanks to Prof. C. H. Yang and Mr Y. C. Lin for their help and support. Also the authors thank Mr Lucas Helms for proofreading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, P., Norouzzadeh, M.S. & Dastghaibyfard, G. A novel legitimacy preserving data hiding scheme based on LAS compressed code of VQ index tables. Multidim Syst Sign Process 27, 433–452 (2016). https://doi.org/10.1007/s11045-014-0309-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0309-0

Keywords

Navigation