Advertisement

Multidimensional Systems and Signal Processing

, Volume 25, Issue 4, pp 847–857 | Cite as

Computationally efficient 2-D DOA estimation for uniform rectangular arrays

  • Wei Zhang
  • Wei Liu
  • Ju Wang
  • Siliang Wu
Article

Abstract

A computationally efficient two-dimensional (2-D) direction-of-arrival (DOA) estimation method for uniform rectangular arrays is presented. A preprocessing transformation matrix is first introduced, which transforms both the complex-valued covariance matrix and the complex-valued search vector into real-valued ones. Then the 2-D DOA estimation problem is decoupled into two successive real-valued one-dimensional (1-D) DOA estimation problems with real-valued computations only. All these measures lead to significantly reduced computational complexity for the proposed method.

Keywords

Two-dimensional DOA estimation Real-valued Uniform rectangular array Computational complexity 

References

  1. Chen, F.-J., Kwong, S., & Kok, C.-W. (2010). ESPRIT-like two-dimensional DOA estimation for coherent signals. IEEE Transactions on Aerospace and Electronic Systems, 46(3), 1477–1484.CrossRefGoogle Scholar
  2. Heidenreich, P., Zoubir, A., & Rubsamen, M. (2012). Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays. IEEE Transactions on Signal Processing, 60(9), 4683–4693.CrossRefMathSciNetGoogle Scholar
  3. Huarng, K.-C., & Yeh, C.-C. (1991). A unitary transformation method for angle-of-arrival estimation. IEEE Transactions on Signal Processing, 39(4), 975–977.CrossRefGoogle Scholar
  4. Liu, Z., Ruan, X., & He, J. (2013). Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidimensional Systems and Signal Processing, 24(1), 105–120.CrossRefMATHMathSciNetGoogle Scholar
  5. Schmidt, R. O. (1986). Multiple emitter location and signal parameter-estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.CrossRefGoogle Scholar
  6. See, C. M. S., & Gershman, A. B. (2004). Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Transactions on Signal Processing, 52(2), 329–338.CrossRefMathSciNetGoogle Scholar
  7. Van Trees, H. L. (2002). Optimum Array Processing, Part IV of Detection, Estimation, and Modultion Theory. New York: Wiley.Google Scholar
  8. Vu, D. T., Renaux, A., Boyer, R., & Marcos, S. (2013). A Cramér Rao bounds based analysis of 3D antenna array geometries made from ULA branches. Multidimensional Systems and Signal Processing, 24(1), 121–155.CrossRefMATHMathSciNetGoogle Scholar
  9. Wang, G., Xin, J., Zheng, N., & Sano, A. (2011). Computationally efficient subspace-based method for two-dimensional direction estimation with L-shaped array. IEEE Transactions on Signal Processing, 59(7), 3197–3212.CrossRefMathSciNetGoogle Scholar
  10. Wu, Y., Liao, G., & So, H. (2003). A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing, 83(8), 1827–1831.CrossRefMATHGoogle Scholar
  11. Xia, T., Zheng, Y., Wan, Q., & Wang, X. (2007). Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays. IEEE Transactions on Antennas and Propagation, 55(9), 2627–2632.CrossRefGoogle Scholar
  12. Ye, Z., & Liu, C. (2008). 2-D DOA estimation in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 56(10), 3150–3158.CrossRefMathSciNetGoogle Scholar
  13. Zhang, L., Liu, W., & Langley, R. J. (2010). A class of constrained adaptive beamforming algorithms based on uniform linear arrays. IEEE Transactions on Signal Processing, 58(7), 3916–3922.CrossRefMathSciNetGoogle Scholar
  14. Zhang, L., Liu, W., & Langley, R. J. (2011). Adaptive beamforming with real-valued coefficients based on uniform linear arrays. IEEE Transactions on Antennas and Propagation, 59(3), 1047–1053.CrossRefGoogle Scholar
  15. Zoltowski, M., Haardt, M., & Mathews, C. (1996). Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT. IEEE Transactions on Signal Processing, 44(2), 316–328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information and ElectronicsBeijing Institute of TechnologyBeijing China
  2. 2.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffield UK

Personalised recommendations