Novel explanation, modeling and realization of Lattice Boltzmann methods for image processing

  • Zhuangzhi Yan
  • Yubiao Sun
  • Jiehui Jiang
  • Junling Wen
  • Xiaoman Lin


Image processing is a cost-effective technology in various applications. Partial differential equation (PDE) methods are popular when realizing image processing. However, computational speed of existing PDE methods cannot meet requirements in practice. To solve this problem, scholars proposed a novel method: Lattice Boltzmann (LB) model. Although LB model has already been applied for image denoising, inpainting and segmentation, its explanation is not systematically concluded and a general LB model for image processing is missing, which resulted in previous investigations difficult to be scaled up. The purpose of this paper is to explore the explanation of LB model for image processing, and propose a general LB mathematical model. To test the feasibility of the proposed LB model, we did several comparison experiments. The comparison results showed that the proposed LB model augmented CPU calculating speed and kept good image processing effect.


Partial differential equation (PDE) Lattice Boltzmann (LB) model  Image processing Denoising Inpainting Segmentation 



The authors would like to thank all colleagues who are involved into this study. Specially, we would like to thank Dr. Yu Chen, Dr. Zhiqiang Wang, M. S. Rui Zhang and M. S. Wei Liu. This work is supported by National Natural Science Foundation of China (Grant No. 61171146).


  1. Angenent, S., Pichon, E., & Tannenbaum, A. (2006). Mathematical methods in medical image processing. Bulletin of the American Mathematical Society, 43(3), 365–396.MATHMathSciNetCrossRefGoogle Scholar
  2. Au, W., & Takei, R. (2001). Image inpainting with the Navier–Stokes equations. Final Report, APMA, 930.Google Scholar
  3. Balla-Arabé, S., & Gao, X. (2012). Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing, 93, 106–114.Google Scholar
  4. Balla-Arabé, S., & Gao, X. (2013). A multiphase entropy-based level set algorithm for mr breast image segmentation using lattice Boltzmann model. In Intelligent science and intelligent data, engineering (pp. 8–16). Berlin: Springer.Google Scholar
  5. Balla-Arabé, S., Gao, X., & Wang, B. (2013). Gpu accelerated edge-region based level set evolution constrained by 2d gray-scale histogram. IEEE Transactions on Image Processing, 22(7), 2688–2698.MathSciNetCrossRefGoogle Scholar
  6. Balla-Arabé, S., Wang, B., & Gao, X. (2011). Level set region based image segmentation using lattice Boltzmann method. In 2011 Seventh international conference on computational intelligence and security (CIS) (pp. 1159–1163), IEEE.Google Scholar
  7. Barcelos, C. A. Z., & Batista, M. A. (2003). Image inpainting and denoising by nonlinear partial differential equations. In XVI Brazilian symposium on Computer graphics and image processing, 2003 (SIBGRAPI 2003) (pp. 287–293), IEEE.Google Scholar
  8. Benzi, R., Succi, S., & Vergassola, M. (1992). The lattice Boltzmann equation: Theory and applications. Physics Reports, 222(3), 145–197.CrossRefGoogle Scholar
  9. Bertalmio, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proceedings of the 27th annual conference on computer graphics and interactive techniques (pp. 417–424). ACM Press/Addison-Wesley.Google Scholar
  10. Carleer, A., Debeir, O., & Wolff, E. (2005). Assessment of very high spatial resolution satellite image segmentations. Photogrammetric Engineering and Remote Sensing, 71(11), 1285–1294.CrossRefGoogle Scholar
  11. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.MATHCrossRefGoogle Scholar
  12. Chan, T., & Shen, J. (2005). Image processing and analysis: Variational, PDE, wavelet, and stochastic methods, Siam.Google Scholar
  13. Chan, T. F., & Shen, J. (2001). Nontexture inpainting by curvature-driven diffusions. Journal of Visual Communication and Image Representation, 12(4), 436–449.CrossRefGoogle Scholar
  14. Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.MATHCrossRefGoogle Scholar
  15. Chang, Q. (2013). Efficient algorithm for isotropic and anisotropic total variation deblurring and denoising. Journal of Applied Mathematics, 2013, 1–14.Google Scholar
  16. Chang, Q., & Yang, T. (2009). A lattice Boltzmann method for image denoising. IEEE Transactions on Image Processing, 18(12), 2797–2802.MathSciNetCrossRefGoogle Scholar
  17. Chao, S.-M., & Tsai, D.-M. (2010). An improved anisotropic diffusion model for detail-and edge-preserving smoothing. Pattern Recognition Letters, 31(13), 2012–2023.CrossRefGoogle Scholar
  18. Chen, Y. (2010). A lattice-Boltzmann method for image inpainting. In 2010 3rd International congress on image and signal processing (CISP) (vol. 3, pp. 1222–1225), IEEE.Google Scholar
  19. Chen, Y., Yan, Z., & Qian, Y. (2008). An anisotropic diffusion model for medical image smoothing by using the lattice Boltzmann method. In 7th Asian-Pacific conference on medical and biological engineering (vol. 19, pp. 255–259). Berlin: Springer.Google Scholar
  20. Chen, Y., Yan, Z., & Shi, J. (2007). Application of lattice Boltzmann method to image segmentation. In 29th Annual international conference of the IEEE engineering in medicine and biology society, 2007 (EMBS 2007) (pp. 6561–6564), IEEE.Google Scholar
  21. Criminisi, A., Pérez, P., & Toyama, K. (2003). Object removal by exemplar-based inpainting. In IEEE computer society conference on computer vision and pattern recognition, 2003. Proceedings 2003 (vol. 2, pp. 1–8), IEEE.Google Scholar
  22. Eggels, J., & Somers, J. (1995). Numerical simulation of free convective flow using the lattice-Boltzmann scheme. International Journal of Heat and Fluid Flow, 16(5), 357–364.CrossRefGoogle Scholar
  23. Filippova, O., Succi, S., Mazzocco, F., Arrighetti, C., Bella, G., & Hänel, D. (2001). Multiscale lattice Boltzmann schemes with turbulence modeling. Journal of Computational Physics, 170(2), 812–829.MATHCrossRefGoogle Scholar
  24. Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2002). Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, 11(7), 689–703.CrossRefGoogle Scholar
  25. Grunau, D., Chen, S., & Egger, K. (1993). A lattice Boltzmann model for multi-phase fluid flows. arXiv, preprint comp-gas/9303001, 2.Google Scholar
  26. Hou, S., Shan, X., Zou, Q., Doolen, G. D., & Soll, W. E. (1997). Evaluation of two lattice Boltzmann models for multiphase flows. Journal of Computational Physics, 138(2), 695–713.MATHMathSciNetCrossRefGoogle Scholar
  27. Huang, R., Wu, H., & Cheng, P. (2013). A new lattice Boltzmann model for solid–liquid phase change. International Journal of Heat and Mass Transfer, 59, 295–301.MATHCrossRefGoogle Scholar
  28. Jawerth, B., Lin, P., & Sinzinger, E. (1999). Lattice Boltzmann models for anisotropic diffusion of images. Journal of Mathematical Imaging and Vision, 11(3), 231–237.MATHMathSciNetCrossRefGoogle Scholar
  29. Jiang, C.-F., Chang, C.-C., & Huang, S.-H. (2012). Regions of interest extraction from spect images for neural degeneration assessment using multimodality image fusion. Multidimensional Systems and Signal Processing, 23(4), 437–449.MATHMathSciNetCrossRefGoogle Scholar
  30. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRefGoogle Scholar
  31. Lassouaoui, N., Hamami, L., & Zerguerras, A. (2003). Segmentation and classification of biological cell images by a multifractal approach. International Journal of Intelligent Systems, 18(6), 657–678.CrossRefGoogle Scholar
  32. Li, B., Meng, M.-H., & Yan, H. (2009). Image denosing by curvature strength diffusion. In International conference on information and automation, 2009 (ICIA’09) (pp. 562–565), IEEE.Google Scholar
  33. Lien, C., Huang, C., Chen, P., & Lin, Y. (2013). An efficient denoising architecture for removal of impulse noise in images. IEEE Transactions on Computer, 62(4), 631–643.MathSciNetCrossRefGoogle Scholar
  34. Mertens, K., Verbeke, L., Ducheyne, E., & De Wulf, R. (2003). Using genetic algorithms in sub-pixel mapping. International Journal of Remote Sensing, 24(21), 4241–4247.CrossRefGoogle Scholar
  35. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRefGoogle Scholar
  36. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation 1. Annual Review of Biomedical Engineering, 2(1), 315–337.CrossRefGoogle Scholar
  37. Qian, Y., d’Humières, D., & Lallemand, P. (1992). Lattice bgk models for Navier–Stokes equation. Europhysics Letters (EPL), 17(6), 479–484.MATHCrossRefGoogle Scholar
  38. Qin, C., Cao, F., & Zhang, X. (2011). Efficient image inpainting using adaptive edge-preserving propagation. The Imaging Science Journal, 59(4), 211–218.CrossRefGoogle Scholar
  39. Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268.MATHCrossRefGoogle Scholar
  40. Shen, J., & Chan, T. F. (2002). Mathematical models for local nontexture inpaintings. SIAM Journal on Applied Mathematics, 62(3), 1019–1043.MATHMathSciNetCrossRefGoogle Scholar
  41. Shih, T. K., Chang, R.-C., Lu, L.-C., Ko, W.-C., & Wang, C.-C. (2004). Adaptive digital image inpainting. In 18th International conference on advanced information Networking and Applications, 2004. AINA 2004 (vol. 1, pp. 71–76), IEEE.Google Scholar
  42. Tang, F., Ying, Y., Wang, J., & Peng, Q. (2005). A novel texture synthesis based algorithm for object removal in photographs. In Advances in computer science-ASIAN 2004. Higher-level decision making (pp. 248–258). Berlin: Springer.Google Scholar
  43. Thangaswamy, S. S., Kadarkarai, R., & Thangaswamy, S. R. R. (2013). Developing an efficient technique for satellite image denoising and resolution enhancement for improving classification accuracy. Journal of Electronic Imaging, 22(1), 013013-1–013013-7.Google Scholar
  44. Tsutahara, M. (2012). The finite-difference lattice Boltzmann method and its application in computational aero-acoustics. Fluid Dynamics Research, 44(4), 1–18.MathSciNetCrossRefGoogle Scholar
  45. Verma, O. P., Hanmandlu, M., Sultania, A. K., & Parihar, A. S. (2013). A novel fuzzy system for edge detection in noisy image using bacterial foraging. Multidimensional Systems and Signal Processing, 24(1), 181–198.MATHMathSciNetCrossRefGoogle Scholar
  46. Wang, Z., Yan, Z., & Chen, G. (2011). Lattice Boltzmann method of active contour for image segmentation. In 2011 Sixth international conference on image and graphics (ICIG), (pp. 338–343), IEEE.Google Scholar
  47. Wang, Z., Yan, Z., Qian, Y., & Chen, G. (2010). Lattice Boltzmann model of anisotropic diffusion for image denoising. In 2010 IEEE youth conference on information computing and telecommunications (YC-ICT) (pp. 21–24), IEEE.Google Scholar
  48. Weickert, J. (1998). Anisotropic diffusion in image processing (vol. 1). Teubner Stuttgart.Google Scholar
  49. Wu, Q., Chen, Y., & Teng, G. (2012). Lattice Boltzmann anisotropic diffusion model based image segmentation. In Computer, informatics, cybernetics and applications (pp. 577–585). Berlin: Springer.Google Scholar
  50. Yu, H., Girimaji, S. S., & Luo, L.-S. (2005). Dns and les of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method. Journal of Computational Physics, 209(2), 599–616.MATHCrossRefGoogle Scholar
  51. Zhang, W., & Shi, B. (2012). Application of lattice Boltzmann method to image filtering. Journal of Mathematical Imaging and Vision, 43(2), 135–142.MATHMathSciNetCrossRefGoogle Scholar
  52. Zhao, Y. (2008). Lattice Boltzmann based pde solver on the gpu. The Visual Computer, 24(5), 323–333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhuangzhi Yan
    • 1
  • Yubiao Sun
    • 1
  • Jiehui Jiang
    • 1
  • Junling Wen
    • 1
  • Xiaoman Lin
    • 1
  1. 1.School of Communication and Information EngineeringShanghai UniversityShanghaiChina

Personalised recommendations