Advertisement

Algebraic phase unwrapping along the real axis: extensions and stabilizations

  • Daichi Kitahara
  • Isao Yamada
Article

Abstract

The unwrapped phase of a complex function is defined with a line integral of the gradient of the arctangent of the ratio of the real and imaginary parts of the function. The phase unwrapping, which is a problem to reconstruct the unwrapped phase of an unknown complex function from its finite observed samples, has been a key for estimating useful physical quantity in many signal and image processing applications. In the light of the functional data analysis, it is natural to estimate first the unknown complex function by a certain piecewise complex polynomial and then to compute the exact unwrapped phase of the piecewise complex polynomial with the algebraic phase unwrapping algorithms (Yamada et al. in IEEE Trans Signal Process 46(6), 1639–1664, 1998; Yamada and Bose in IEEE Trans Circuits Syst I Fundam Theory Appl 49(3), 298–304, 2002; Yamada and Oguchi in Multidimens Syst Signal Process 22(1–3), 191–211, 2011). In this paper, we propose several useful extensions and numerical stabilizations of the algebraic phase unwrapping along the real axis which was established originally in Yamada and Oguchi (Multidimens Syst Signal Process 22(1–3), 191–211, 2011). The proposed extensions include (i) removal of a certain critical assumption premised in the original algebraic phase unwrapping, and (ii) algebraic phase unwrapping for a pair of bivariate polynomials. Moreover, in order to resolve certain numerical instabilities caused by the coefficient growth in an inductive step in the original algorithm, we propose to compute directly a certain subresultant sequence without passing through the inductive step. The extensive numerical experiments exemplify the notable improvement, in the performance of the algebraic phase unwrapping, made by the proposed numerical stabilization.

Keywords

Algebraic phase unwrapping Two-dimensional phase unwrapping  Path independence condition Numerical stabilization Sturm sequence  Subresultant sequence 

Notes

Acknowledgments

This work was supported in part by JSPS Grants-in-Aid (B-21300091).

References

  1. Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The design and analysis of computer algorithms. Massachusetts: Addison-Wesley.MATHGoogle Scholar
  2. Anai, H., & Yokoyama, K. (2011). Algorithms of quantifier elimination and their applications: Optimization by symbolic and algebraic methods. Tokyo: University of Tokyo Press (in Japanese).Google Scholar
  3. Apostol, T. M. (1974). Mathematical analysis (2nd ed.). Massachusetts: Addison-Wesley.MATHGoogle Scholar
  4. Brown, W. S., & Traub, J. F. (1971). On Euclid’s algorithm and the theory of subresultants. Journal of the ACM, 18(4), 505–514.CrossRefMATHMathSciNetGoogle Scholar
  5. Buckland, J. R., Huntley, J. M., & Turner, S. R. E. (1995). Unwrapping noisy phase maps by use of a minimum cost matching algorithm. Applied Optics, 34(23), 5100–5108.CrossRefGoogle Scholar
  6. Busbee, B. L., Gollub, G. H., & Nielson, C. W. (1970). On direct methods for solving Poisson’s equations. SIAM Journal of Numerical Analysis, 7(4), 627–656.CrossRefGoogle Scholar
  7. Chui, C. K. (1988). Multivariate splines. Pennsylvania: SIAM.CrossRefGoogle Scholar
  8. Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J. P., et al. (1999). Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation X rays. Applied Physics Letters, 75(19), 2912–2914.CrossRefGoogle Scholar
  9. Collins, G. E. (1967). Subresultants and reduced polynomial remainder sequence. Journal of the ACM, 14(1), 128–142.CrossRefMATHGoogle Scholar
  10. Costantini, M. (1998). A novel phase unwrapping method based on network programming. IEEE Transactions on Geoscience and Remote Sensing, 36(3), 813–821.CrossRefMathSciNetGoogle Scholar
  11. Denbigh, P. N. (1994). Signal processing strategies for a bathymetric sidescan sonar. IEEE Journal of Oceanic Engineering, 19(3), 382–390.CrossRefGoogle Scholar
  12. Flynn, T. J. (1997). Two-dimensional phase unwrapping with minimum weighted discontinuity. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 14(10), 2692–2701.CrossRefGoogle Scholar
  13. Fried, D. L. (1977). Least-squares fitting a wave-front distortion estimate to an array of phase-difference measurements. Journal of the Optical Society of America, 67, 370–375.CrossRefGoogle Scholar
  14. Galbis, A., & Maestre, M. (2012). Vector analysis versus vector calculus. New York: Springer.CrossRefMATHGoogle Scholar
  15. Ghiglia, D. C., & Pritt, M. D. (1998). Two-dimensional phase unwrapping: Theory, algorithms, and software. New York: Wiley.MATHGoogle Scholar
  16. Ghiglia, D. C., & Romero, L. A. (1996). Minimum \(L^{p}\)-norm two-dimensional phase unwrapping. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 13(10), 1–15.CrossRefMathSciNetGoogle Scholar
  17. Glover, G. H., & Schneider, E. (1991). Three-point Dixon technique for true water/fat decomposition with \(B_{0}\) inhomogeneity correction. Magnetic Resonance in Medicine, 18(2), 371–383.CrossRefGoogle Scholar
  18. Goldstein, R. M., Zebker, H. A., & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4), 713–720.Google Scholar
  19. Graham, L. C. (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE, 62(6), 763–768.CrossRefGoogle Scholar
  20. Hansen, R. E., Sæbø, T. O., Gade, K., & Chapman, S. (2003). Signal processing for AUV based interferometric synthetic aperture sonar. In Proceedings of OCEANS (pp. 2438–2444).Google Scholar
  21. Hayes, M. P., & Gough, P. T. (2009). Synthetic aperture sonar: A review of current status. IEEE Journal of Oceanic Engineering, 34(3), 207–224.CrossRefGoogle Scholar
  22. Henrici, P. (1974). Applied and computational complex analysis vol. 1: Power series integration conformal mapping location of zeros. New York: Wiley.MATHGoogle Scholar
  23. Hudgin, R. H. (1977). Wave-front reconstruction for compensated imaging. Journal of the Optical Society of America, 67(3), 375–378.CrossRefGoogle Scholar
  24. Jakowatz, C. V, Jr, Wahl, D. E., Eichel, P. H., Ghiglia, D. C., & Thompson, P. A. (1996). Spotlight-mode synthetic aperture radar: A signal processing approach. Massachusetts: Kluwer Academic Publishers.CrossRefGoogle Scholar
  25. Judge, T. R., & Bryanston-Cross, P. J. (1994). A review of phase unwrapping techniques in fringe analysis. Optics and Laser Engineering, 21(4), 199–293.CrossRefGoogle Scholar
  26. Kitahara, D., & Yamada, I. (2012). A robust algebraic phase unwrapping based on spline approximation. IEICE Technical Report, 112(115), 1–6.Google Scholar
  27. Lin, Q., Vesecky, J. F., & Zebker, H. (1994, January). Phase unwrapping through fringe-line detection in synthetic aperture radar interferometry. Applied Optics, 33(2), 201–208.Google Scholar
  28. Marden, M. (1989). Geometry of polynomials, mathematical surveys and monographs, no. 3. New York: American Mathematical Society; reprint with corrections of the original version, 1949.Google Scholar
  29. Marron, J. C., Sanchez, P. P., & Sullivan, R. (1990). Unwrapping algorithm for least-squares phase recovery from the modulo \(2\pi \) bispectrum phase. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 7(1), 14–20.CrossRefMathSciNetGoogle Scholar
  30. McGowan, R., & Kuc, R. (1982). A direct relation between a signal time series and its unwrapped phase. IEEE Transactions on Acoustics, Speech and Signal Processing, 30(5), 719–726.CrossRefMATHGoogle Scholar
  31. Mishra, B. (1993). Algorithmic algebra. New York: Springer.CrossRefMATHGoogle Scholar
  32. Moon-Ho Song, S., Napel, S., Pelc, N. J., & Glover, G. H. (1995). Phase unwrapping of MR phase images using Poisson equation. IEEE Transactions on Image Processing, 4(5), 667–676.CrossRefGoogle Scholar
  33. Negrete-Regagnon, P. (1996). Practical aspects of image recovery by means of bispectrum. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 13(7), 1557–1576.CrossRefGoogle Scholar
  34. Noll, R. J. (1978). Phase estimates from slope-type wave-front sensors. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 68(1), 139–140.CrossRefMathSciNetGoogle Scholar
  35. Pritt, M. D., & Shipman, J. S. (1994). Least-squares two-dimensional phase unwrapping using FFTs. IEEE Transactions on Geoscience and Remote Sensing, 32(3), 706–708.CrossRefGoogle Scholar
  36. Ramsay, J. O., & Silverman, B. W. (2005). Functuinal data analysis (2nd ed.). New York: Springer.Google Scholar
  37. Rudin, W. (1976). Principles of mathematical analysis (3rd ed.). New York: McGraw-Hill.MATHGoogle Scholar
  38. Sasaki, T., & Sasaki, M. (1989). Analysis of accuracy decreasing in polynomial remainder sequence with floating-point number coefficient. Journal of Information Processing, 12(4), 394–403.MATHMathSciNetGoogle Scholar
  39. Sasaki, T., & Sasaki, M. (1997). Polynomial remainder sequence and approximate GCD. ACM SIGSAM Bulletin, 31(3), 4–10.CrossRefGoogle Scholar
  40. Schumaker, L. L. (2007). Spline functions: Basic theory (3rd ed.). Cambridgeshire: Cambridge University Press.CrossRefGoogle Scholar
  41. Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric regression curve fitting. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 47(1), 1–52.MATHGoogle Scholar
  42. Szumowski, J., Coshow, W. R., Li, F., & Quinn, S. F. (1994). Phase unwrapping in the three-point Dixon method for fat suppression MR imaging. Radiology, 192(2), 555–561.CrossRefGoogle Scholar
  43. Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16(6), 22–38.CrossRefGoogle Scholar
  44. Wahba, G. (1990). Spline models for observational data. Pennsylvania: SIAM.CrossRefMATHGoogle Scholar
  45. Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P., et al. (2005). X-ray phase imaging with a grating interferometer. Optics Express, 13(16), 6296–6304.CrossRefGoogle Scholar
  46. Yamada, I., & Bose, N. K. (2002). Algebraic phase unwrapping and zero distribution of polynomial for continuous-time systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(3), 298–304.CrossRefMathSciNetGoogle Scholar
  47. Yamada, I., & Oguchi, K. (2011). High-resolution estimation of the directions-of-arrival distribution by algebraic phase unwrapping algorithms. Multidimensional Systems and Signal Processing, 22(1–3), 191–211.CrossRefMATHMathSciNetGoogle Scholar
  48. Yamada, I., Kurosawa, K., Hasegawa, H., & Sakaniwa, K. (1998). Algebraic multidimensional phase unwrapping and zero distribution of complex polynomials—Characterization of multivariate stable polynomials. IEEE Transactions on Signal Processing, 46(6), 1639–1664.CrossRefMATHMathSciNetGoogle Scholar
  49. Ying, L. (2006). Phase unwrapping. In M. Akay (Ed.), Wiley encyclopedia of biomedical engineering. New York: Wiley.Google Scholar
  50. Zebker, H. A., & Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research, 91(B5), 4993–4999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Communications and Computer EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations