Advertisement

Multidimensional Systems and Signal Processing

, Volume 25, Issue 4, pp 659–681 | Cite as

An ideal image edge detection scheme

  • Xiaochun Zhang
  • Chuancai Liu
Article

Abstract

This paper introduces a scale-invariant and contrast-invariant multi-scale differential edge detector. The method is a direct consequence of two key discoveries: (1) a precise scale normalization method and (2) a formula to verify scale-invariant detectors. The new scale normalization method provides differential operators with respect to scale, among them the scale-invariant edge detectors. To investigate these differential detectors quantitatively, mathematical functions were used to represent the edges and to solve for the parameters, including position, width, contrast, offset, and orientation, in closed form. Noise is filtered as a low-contrast feature. The method has been tested with various kinds of synthesized edge functions and can extract edge features accurately. It is suitable for real-world images of several kinds of degradation.

Keywords

Edge Scale space Gradient magnitude Laplacian of Gaussian  Heat diffusion equation Error function Scale invariance Scale normalization  Multi-scale 

References

  1. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.CrossRefGoogle Scholar
  2. Feynman, R. P., Leighton, R. B., & Sands, M. (1964). The Feynman lectures on physics. Reading, MA: Addison-Wesley.Google Scholar
  3. Gebäck, T., & Koumoutsakos, P. (2009). Edge detection in microscopy images using curvelets. BMC Bioinformatics, 10, 75.CrossRefGoogle Scholar
  4. Guo, C., Zhu, S. C., & Wu, Y. N. (2007). Primal sketch: Integrating structure and texture. Computer Vision and Image Understanding, 106(1), 5–19.CrossRefGoogle Scholar
  5. Hajiaboli, M. R., Ahmad, M. O., & Wang, C. (2012). An edge-adapting Laplacian Kernel for nonlinear diffusion filters. IEEE Transactions on Image Processing, 21(4), 1561–1572.CrossRefMathSciNetGoogle Scholar
  6. Ham, B., Min, D., & Sohn, K. (2012). Robust scale-space filter using second-order partial differential equations. IEEE Transactions on Image Processing, 21(9), 3937–3951.CrossRefMathSciNetGoogle Scholar
  7. Haselhoff, A., & Kummert, A. (2012). On filtering by means of generalized integral images: A review and applications. Multidimensional Systems and Signal Processing, 23(1), 291–312.CrossRefMATHMathSciNetGoogle Scholar
  8. Hu, Q., He, X., & Zhou, J. (2005). Multiscale edge detection with bilateral filtering in spiral architecture. In Proceedings of the Pan-Sydney area workshop on visual information processing (pp. 29–32).Google Scholar
  9. Koenderink, J. J. (1984). The structure of images. Biological Cybernetics, 50(5), 363–370.CrossRefMATHMathSciNetGoogle Scholar
  10. Kokkinos, I., Maragos, P., & Yuille, A. (2006). Bottom-up & top-down object detection using primal sketch features and graphical models. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2, 1893–1900.Google Scholar
  11. Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision, 30(2), 117–154.Google Scholar
  12. Liu, X., Wang, C., Yao, H., & Zhang, L. (2012). The scale of edges. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 62–469).Google Scholar
  13. Mahmoodi, S. (2011). Scale-invariant filtering design and analysis for edge detection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 467(2130), 1719–1738.CrossRefMATHMathSciNetGoogle Scholar
  14. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., & Ponce, J. (2008). Discriminative sparse image models for class-specific edge detection and image interpretation. ECCV, Lecture Notes in Computer Science, 5304, 43–56.CrossRefGoogle Scholar
  15. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London Series B, Biological Sciences, 207(1167), 187–217.CrossRefGoogle Scholar
  16. Miller, E., & Willsky, A. S. (1997). Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems. Multidimensional Systems and Signal Processing, 8(1), 151–184.CrossRefMATHGoogle Scholar
  17. Verma, O. P., Hanmandlu, M., et al. (2013). A novel fuzzy system for edge detection in noisy image using bacterial foraging. Multidimensional Systems and Signal Processing, 24(1), 181–198.CrossRefMATHMathSciNetGoogle Scholar
  18. Witkin, A. P. (1983). Scale-space filtering. In 8th International joint conference on artificial intelligence (vol. 2, pp. 1019–1022).Google Scholar
  19. Yi, S., Labate, D., Easley, G. R., & Krim, H. (2009). A shearlet approach to edge analysis and detection. IEEE Transactions on Image Processing, 18(5), 929–941.CrossRefMathSciNetGoogle Scholar
  20. Yu, P., Qin, A. K., & Clausi, D. A. (2012). Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1302–1317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations