Advertisement

A Cramér Rao bounds based analysis of 3D antenna array geometries made from ULA branches

  • Dinh Thang Vu
  • Alexandre Renaux
  • Rémy Boyer
  • Sylvie Marcos
Article

Abstract

In the context of passive sources localization using antenna array, the estimation accuracy of elevation, and azimuth are related not only to the kind of estimator which is used, but also to the geometry of the considered antenna array. Although there are several available results on the linear array, and also for planar arrays, other geometries existing in the literature, such as 3D arrays, have been less studied. In this paper, we study the impact of the geometry of a family of 3D models of antenna array on the estimation performance of elevation, and azimuth. The Cramér-Rao Bound (CRB), which is widely spread in signal processing to characterize the estimation performance will be used here as a useful tool to find the optimal configuration. In particular, we give closed-form expressions of CRB for a 3D antenna array under both conditional, and unconditional observation models. Thanks to these explicit expressions, the impact of the third dimension to the estimation performance is analyzed. Particularly, we give criterions to design an isotropic 3D array depending on the considered observation model. Several 3D particular geometry antennas made from uniform linear array (ULA) are analyzed, and compared with 2D antenna arrays. The isotropy condition of such arrays is analyzed. The presented framework can be used for further studies of other types of arrays.

Keywords

Array geometry optimization Direction of arrival estimation Performance bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baysal U., Moses R. L. (2003) On the geometry of isotropic arrays. IEEE Transactions on Signal Processing 51(6): 1469–1477MathSciNetCrossRefGoogle Scholar
  2. Bos A. V. D. (1994) A Cramer Rao lower bound for complex parameters. IEEE Transactions on Acoustics Speech, Signal Processing 42: 2859Google Scholar
  3. Cedervall M., Moses R. L. (1997) Efficient maximum likelihood DOA estimation for signals with known waveforms in presence of multipath. IEEE Transactions on Signal Processing 45: 808–811CrossRefGoogle Scholar
  4. Choi Y. H. (2004) Unified approach to Cramer-Rao bounds in direction estimation with known signal structures. Signal Processing 84(10): 1875–1882MATHCrossRefGoogle Scholar
  5. Ferréol, A., & Chevalier, P. (2009). High resolution direction finding: From performance toward antenna array optimization -the mono-source case. In Proceedings of European signal processing conference (pp. 1973–1977). Glasgow, Scotland.Google Scholar
  6. Filik, T., & Tuncer, T. E. (2008). Uniform and nonuniform V-shaped isotropic planar arrays. In Proceedings of sensor array and multichannel signal processing workshop (pp. 99–103). Germany: Darmstadt.Google Scholar
  7. Gazzah H., Abed-Meraim K. (2009) Optimum ambiguity free directional and omni directional planar antenna arrays for DOA estimation. IEEE Transactions on Signal Processing 57(10): 3942–3953MathSciNetCrossRefGoogle Scholar
  8. Gazzah H., Marcos S. (2006) Cramér-Rao bounds for antenna array design. IEEE Transactions on Signal Processing 54(1): 336–345CrossRefGoogle Scholar
  9. Gavish M., Weiss A. J. (1991) Array geometry for ambiguity resolution in direction finding. IEEE Transactions on Antennas Propagation 44(6): 143–146Google Scholar
  10. Godara L. C., Cantoni A. (1981) Uniqueness and linear independence of sterring vectors in array space. Journal of Acoustic Society of America 70(2): 467–475MathSciNetCrossRefGoogle Scholar
  11. Hua Y., Sarkar T. K. (1991) A note on the Cramér-Rao bound for 2-D direction finding based on 2-D array. IEEE Transactions on Signal Processing 39(5): 1215–1218CrossRefGoogle Scholar
  12. Hua Y., Sarkar T. K., Weiner D. D. (1991) An L-shaped array for estimating 2D directions of wave arrival. IEEE Transactions on Antennas Propagation 39: 143–146CrossRefGoogle Scholar
  13. Huang, X., Reilly, J. P., & Wong M. (1991). Optimal design of linear array of sensors. In: Proceedings of IEEE international conference acoustics speech, signal processing, Vol. 2 (pp. 1405–1408). Canada: Toronto, Ont.Google Scholar
  14. Kay S. M. (1993) Fundamentals of statistical signal processing, Vol. 1. Prentice Hall, NJGoogle Scholar
  15. Leshem A., van der Veen A. -J. (1999) Direction-of-arrival estimation for constant modulus signals. IEEE Transactions on Signal Processing 47(11): 3125–3129MATHCrossRefGoogle Scholar
  16. Li J., Compton R. T. (1993) Maximum likelihood angle estimation for signals with known waveforms. IEEE Transactions on Signal Processing 41: 2850–2862MATHCrossRefGoogle Scholar
  17. Li J., Halder B., Stoica P., Viberg M. (1995) Computationally efficient angle estimation for signals with known waveforms. IEEE Transactions on Signal Processing 43: 2154–2163CrossRefGoogle Scholar
  18. Lo J. T. H., Marple S. L. Jr (1992) Observability conditions for multiple signal direction finding and array sensor localization. IEEE Transactions on Signal Processing 40(11): 2641–2650MATHCrossRefGoogle Scholar
  19. Lui K. W. K., So H. C. (2009) A study of two-dmensional sensor placement using time-difference-of-arrival measurements. Digital Signal Processing 19: 650–659CrossRefGoogle Scholar
  20. Manikas A. (2004) Differential geometry in array processing. Imperial College Press, LondonMATHCrossRefGoogle Scholar
  21. Mirkin A., Sibul L. H. (1991) Cramér-Rao bounds on angle estimation with a two-dimensional array. IEEE Transactions on Signal Processing 39: 515–517CrossRefGoogle Scholar
  22. Moffet A. T. (1968) Minimum redundancy linear arrays. IEEE Transactions on Antennas Propagation 16: 172–175CrossRefGoogle Scholar
  23. Nielsen R. O. (1994) Azimuth and elevation angle estimation with a three dimensional array. IEEE Journal of Oceanic Engineering 19(1): 84–86CrossRefGoogle Scholar
  24. Oktel U., Moses R. L. (2005) A Bayesian approach to array geometry design. IEEE Transactions on Signal Processing 53(5): 1919–1923MathSciNetCrossRefGoogle Scholar
  25. Ottersten B., Viberg M., Stoica P., Nehorai A. (1993) Exact and large sample maximum likelihood techniques for parameter estimation and detection in array processing. In: Haykin S., Litva J., Shepherd T. J. (eds) Radar array processing, Chap. 4. Springer, Berlin, pp 99–151CrossRefGoogle Scholar
  26. Porat B., Friedlander B. (1988) Analysis of the asymptotic relative efficiency of the MUSIC algorithm. IEEE Transactions on Acoustics Speech, Signal Processing 36(4): 532–544MathSciNetMATHCrossRefGoogle Scholar
  27. Renaux A., Foster P., Chaumette E., Larzabal P. (2006) On the high-SNR conditional maximum-likelihood estimator full statistical characterization. IEEE Transactions on Signal Processing 54(12): 4840–4843CrossRefGoogle Scholar
  28. Renaux A., Foster P., Boyer E., Larzabal P. (2007) Unconditional maximum likelihood performance at finite number of samples and high signal-to-noise ratio. IEEE Transactions on Signal Processing 55(5): 2358–2364MathSciNetCrossRefGoogle Scholar
  29. Sengupta D., Smith T., Larson R. (1968) Radiation characteristics of a spherical array of circularly polarized elements. IEEE Transactions on Antennas Propagation 16(1): 2–7CrossRefGoogle Scholar
  30. Stoica P., Nehorai A. (1989) MUSIC, maximum likelihood and the Cramér-Rao bound. IEEE Transactions Acoustics Speech, Signal Processing 37: 720–741MathSciNetMATHCrossRefGoogle Scholar
  31. Stoica P., Nehorai A. (1990) Performances study of conditional and unconditional direction of arrival estimation. IEEE Transactions on Acoustics Speech, Signal Processing 38: 1783–1795MATHCrossRefGoogle Scholar
  32. Stoica P., Moses R. (2005) Spectral analysis of signals. Prentice Hall, NJMATHGoogle Scholar
  33. Tan K. C., Goh S. S., Tan E. C. (1996) A study of the rank-ambiguilty issues in direction-of-arrival estimation. IEEE Transactions on Signal Processing 44(4): 880–887CrossRefGoogle Scholar
  34. VanTrees H. L. (2002) Detection, estimation and modulation theory: Optimum array processing, Vol. 4. Wiley, New YorkGoogle Scholar
  35. Yang, B., & Scheuing, J. (2005). Cramér-Rao bound and optimum sensor array for source localization from the differences of arrival. In Proceedings of IEEE international conference acoustics speech, signal processing Vol. 4 (pp. 961–964). Philadenphia, USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dinh Thang Vu
    • 1
  • Alexandre Renaux
    • 1
  • Rémy Boyer
    • 1
  • Sylvie Marcos
    • 1
  1. 1.Laboratory of Signals and Systems SupélecUniversity Paris-Sud 11Gif-sur-Yvette CedexFrance

Personalised recommendations