Advertisement

Multidimensional Systems and Signal Processing

, Volume 23, Issue 3, pp 329–347 | Cite as

Fractional and nD systems: a continuous case

  • Olivier Bachelier
  • Pawel Dabkowski
  • Krzysztof Galkowski
  • Anton Kummert
Article

Abstract

In the paper, a possibility of employing the 2D, and more generally nD systems approach for the analysis of linear fractional degree systems for the introduced here, so-called n-commensurate transfer functions is shown. This approach induces a significant reduction of an overall problem dimensionality and gives interesting insights for stability analysis.

Keywords

Linear fractional degree systems nD systems LMI Stability Stabilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn H., Chen Y., Podlubny I. (2007) Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. Applied Mathematics and Computation 187(1): 27–34. doi: 10.1016/j.amc.2006.08.099 MathSciNetMATHCrossRefGoogle Scholar
  2. Boyd S., Ghaoui L. E., Feron E., Balakrishnan V. (1994) Linear matrix inequalities in system and control theory, vol 15 of SIAM studies in applied mathematics. SIAM, PhiladelphiaCrossRefGoogle Scholar
  3. Chen Y., Ahn H., Xue D. (2006a) Robust controllability of interval fractional order linear time invariant systems. Signal Processing 86(10): 2794–2802. doi: 10.1016/j.sigpro.2006.02.021 MATHCrossRefGoogle Scholar
  4. Chen Y., Ahn H., Podlubny I. (2006b) Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Processing 86(10): 2611–2618MATHCrossRefGoogle Scholar
  5. Chilali M., Gahinet P. (1996) H design with pole placement constraints: An LMI approach. IEEE Transactions on Automatic Control 41(3): 358–366MathSciNetMATHCrossRefGoogle Scholar
  6. Concepcion, A. M., YangQuan, C., Vinagre, B. M., Xue, D., & Feliu, V. (2010). Fractional-order systems and control fundamentals and applications. Advances in Industrial Control. doi: 10.1007/978-1-84996-335-0.
  7. Deng T., Nakagawa Y. (2004) SVD-based design and new structures for variable fractional-delay digital filters. IEEE Transaction on Signal Processing 52(9): 2513–2527MathSciNetCrossRefGoogle Scholar
  8. Finsler P. (1937) Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Mathematics Helvetica 9: 188–192MathSciNetCrossRefGoogle Scholar
  9. Galkowski, K., & Kummert, A. (2005). Fractional polynomials and nD systems. ISCAS 2005 May 2005, Kobe, Japan.Google Scholar
  10. Galkowski K. (2002) State-space realizations of linear 2-D systems with extensions to the general nD (n > 2) case vol 263 of lecture notes in control and information sciences. Springer, LondonGoogle Scholar
  11. Hyo-Sung A., YangQuan C. (2008) Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 44(11): 2985–2988MathSciNetMATHCrossRefGoogle Scholar
  12. Iwasaki T., Hara S. (2005) Generalized KYP lemma: Unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control 50(1): 41–59MathSciNetCrossRefGoogle Scholar
  13. Kaczorek T. (2009) Reachability of cone fractional continuous-time linear systems. International Journal of Application Mathematical Computationl Science 19(1): 89–93MathSciNetMATHGoogle Scholar
  14. Matignon, D. (1996). Stability results on fractional differential equations with applications to control processing. IMACS, IEEE-SMC 1996. Lille-France, July.Google Scholar
  15. Miller K. S., Ross B. (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New YorkMATHGoogle Scholar
  16. Oustaloup A. (1995) La derivation non entiere. Hermes, ParisMATHGoogle Scholar
  17. Podlubny I., Dorcak L., Misanek J. (1995) Application of fractional—Order derivatives to calculation of heat load intensity change in blast furnace walls. Transactions of Technology University of Kosice 5: 137–144Google Scholar
  18. Roesser R. (1975) A discrete state space model for linear image processing. IEEE Transaction on Automatic Control 20: 1–10MathSciNetMATHCrossRefGoogle Scholar
  19. Sari, B., Bachelier, O., & Mehdi, D. (2008). A S-regularity approach to the analysis of descriptor models. Proceedings of IEEE conference on decision and control (CDC’2008). Cancun, Mexico, December.Google Scholar
  20. Scherer C. W. (2001) LPV control and full block multipliers. Automatica 37: 361–375MathSciNetMATHCrossRefGoogle Scholar
  21. Skelton R. E., Iwasaki T., Grigoriadis K. (1997) A unified approach to linear control design. Taylor and Francis, LondonGoogle Scholar
  22. Tenreiro Machado J. A. (2001) Discrete-time fractional-order controllers. FCAA Journal of Fractional Calculus and Applied Analysis 4(1): 47–66MathSciNetMATHGoogle Scholar
  23. Vinagre B.M., Petras I., Podlubny I., Chen Y.Q. (2002) Using fractional-order adjustment rules and fractional order reference models in model reference adaptive control. Annals of International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 27(6): 269–279MathSciNetGoogle Scholar
  24. Xu L., Fan H., Lin Z., Bose N. K. (2008) A direct–Construction approach to multidimensional realization and LFR uncertainty modelling. Multidimensional Systems and Signal Processing 19(3–4): 323–359MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olivier Bachelier
    • 1
  • Pawel Dabkowski
    • 2
  • Krzysztof Galkowski
    • 2
  • Anton Kummert
    • 3
  1. 1.LAII-ENSIP, University of PoitiersPoitiers CedexFrance
  2. 2.Institute of PhysicsNicolaus Copernicus University in TorunTorunPoland
  3. 3.Faculty of Electrical, Information and Media Engineering, Communication TheoryUniversity of WuppertalWuppertalGermany

Personalised recommendations