Realization using the Roesser model for implementations in distributed grid sensor networks

  • Buddika Sumanasena
  • Peter H. Bauer


Using the Roesser model, a method for distributed information processing in grid sensor networks is presented by Sumanasena and Bauer (A Roesser model based multidimensional systems approach for grid sensor networks. Pacific Grove, California, 2009). The method can be used to implement linear systems in grid sensor networks. Unless information originating in a node can be conveyed over the entire sensor network in a single time slot, for a system described by the Roesser model to be implementable in real-time on a sensor network, the system matrices of the Roesser model have to assume a particular form. A necessary and sufficient condition for a proper transfer matrix to be realizable in the constrained Roesser model is established in this paper. A realization algorithm to derive the Roesser model of the desired form, given an admissible transfer matrix is derived. The analogues problem for the realization of non-proper transfer matrices is also addressed.


Grid sensor networks Roesser model Realization Distributed signal processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AboElFotoh H., Iyengar S., Chakrabarty K. (2005) Computing reliability and message delay for cooperative wireless distributed sensor networks subject to random failures. IEEE Transactions on Reliability 54(1): 145–155CrossRefGoogle Scholar
  2. AboElFotoh H. M. F., Elmallah E. S., Hassanein H. S. (2007) A flow-based reliability measure for wireless sensor networks. International Journal of Sensor Networks 2(5/6): 311–320CrossRefGoogle Scholar
  3. Akbar, A., Mansoor, W., Chaudhry, S., Kashif, A., & Kim K. (2006). Node-link-failure resilient routing architecture for sensor grids. In The 8th international conference advanced communication technology (pp. 131–135). Phoenix, USA.Google Scholar
  4. Barrenechea. G., & Beferull-Lozano, B., Vetterli, M. (2004). Lattice sensor networks: capacity limits, optimal routing and robustness to failures. In Proceedings of the 3rd international symposium on information processing in sensor networks (pp. 186–195). Berkeley, USA.Google Scholar
  5. Bose N. (2003) Multidimensional systems theory and applications. Kluwer Academic PublishersGoogle Scholar
  6. Dewasurendra, D. A., & Bauer, P. H. (2008). A novel approach to grid sensor networks. In 15th IEEE International Conference on Electronics, Circuits and Systems, Malta, pp. 1191–1194Google Scholar
  7. Fan, H., Xu, L., & Lin, Z. (2006). A constructive procedure for three-dimensional realization. In Proceedings of the 6th world congress on intelligent control and automation (pp. 1893–1896). Dalian, China.Google Scholar
  8. Fornasini E., Marchesini G. (1978) Doubly-indexed dynamical systems: State-space models and structural properties. Mathematical Systems Theory 12(1): 59–72MATHCrossRefMathSciNetGoogle Scholar
  9. Givone D., Roesser R. (1972) Multidimensional linear iterative circuits- general properties. IEEE Transactions on Computers C-21(10): 1067–1073CrossRefMathSciNetGoogle Scholar
  10. Hu W., Bulusu N., Jhan S. (2005) A communication paradigm for hybrid sensor/actuator networks. International Journal of Wireless Information Networks 12(1): 47–59CrossRefGoogle Scholar
  11. Huang. Y., Loewke, K., Schaaf, K., & Nemat-Nasser, S. (2005). Localized SHM with embedded sensor network. In Proceedings of the 5th international workshop on structural health monitoring (pp. 1554–1561). Stanford.Google Scholar
  12. Kanellakis A. J., Paraskevopoulos P. N., Theodorou N. J., Varoufakis S. J. (1989) On the canonical state-space realization of 3-d discrete systems. IEE Proceedings on Circuits, Devices and Systems 136: 19–31CrossRefGoogle Scholar
  13. Lele S. G., Mendel J. M. (1987) Modeling and recursive state estimation for two-dimensional noncausal filters with applications in image restoration. IEEE Transactions on Circuits and Systems I CAS 34(12): 1507–1517CrossRefGoogle Scholar
  14. Leoncini M, Resta G, & Santi P (2005) Analysis of a wireless sensor dropping problem in wide-area environmental monitoring. In Proceedings of the 4th international symposium on information processing in sensor networks (pp. 239–245). Los Angeles, California.Google Scholar
  15. Manikopoulos C. N., Antoniou G. E. (1990) State-space realization of three-dimensional systems using the modified Cauer form. International Journal of Systems Science 12(21): 2673–2678CrossRefGoogle Scholar
  16. Ntogramatzidis L., Cantoni M., Yang R. (2007) On the partial realization of noncausal 2-d linear systems. IEEE Transactions on Circuits and Systems I 54(8): 1800–1808CrossRefMathSciNetGoogle Scholar
  17. Shakkottai, S., Srikant, R., & Shroff, N. (2003). Unreliable sensor grids: Coverage, connectivity and diameter. In Proceedings of IEEE INFOCOM (pp. 1073–1083). San Francisco.Google Scholar
  18. Sumanasena, M. G. B., & Bauer, P. H. (2008). Distributed m-d filtering for wave front detection in grid sensor networks. In Proceedings of the 20th IASTED international conference on parallel and distributed computing and systems (pp. 423–429). Orlando, Florida.Google Scholar
  19. Sumanasena, M. G. B., Bauer, P. H. (2009). A Roesser model based multidimensional systems approach for grid sensor networks. In 43rd asilomar conference on signals systems and computers. California: Pacific Grove.Google Scholar
  20. Theodorou N. J., Tzafestas S. G. (1984) A canonical state-space model for three-dimensional systems. International Journal of Systems Science 12(15): 1353–1379CrossRefGoogle Scholar
  21. Xu, K., Takahara, G., & Hassanein, H. (2006). On the robustness of grid-based deployment in wireless sensor networks. In Proceedings of the 2006 international conference on wireless communications and mobile computing (pp. 1183–1188). Canada: Vancouver.Google Scholar
  22. Xu L., Fan H., Lin Z., Bose N. K. (2008) A direct-construction approach to multidimensional realization and LFR uncertainty modeling. Multidimensional Systems Signal Processing 19(3–4): 323–359MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations