Multidimensional Systems and Signal Processing

, Volume 20, Issue 4, pp 375–384 | Cite as

Superresolution reconstruction using nonlinear gradient-based regularization



This paper discusses the problem of superresolution reconstruction. To preserve edges accurately and efficiently in the reconstruction, we propose a nonlinear gradient-based regularization that uses the gradient vector field of a preliminary high resolution image to configure a regularization matrix and compute the regularization parameters. Compared with other existing methods, it not only enhances the spatial resolution of the resulting images, but can also preserve edges and smooth noise to a greater extent. The advantages are shown in simulations and experiments with synthetic and real images.


Superresolution Inverse problem Image reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blu, T., Bay, H., & Unser, M. (2002). A new high-resolution processing method for the deconvolution of optical coherence tomography signals. In IEEE International Symposium on Biomedical Imaging, Vol. 3, pp. 777–780.Google Scholar
  2. Cao N., Nehorai A., Jacob M. (2007) Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm. Optics Express 15(21): 13695–13708CrossRefGoogle Scholar
  3. Chan W.-S., Lam E.Y., Ng M.K., Mak G.Y. (2007) Super-resolution reconstruction in a computational compound-eye imaging system. Multidimensional Systems and Signal Processing 18(2–3): 83–101MATHCrossRefMathSciNetGoogle Scholar
  4. Charbonnier P., Blanc-Féraud L., Aubert G., Barlaud M. (1997) Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing 6(2): 298–311CrossRefGoogle Scholar
  5. Deriche, R., Kornprobst, P., Nikolova, M., & Ng, M. K. (2003). Half-quadratic regularization for MRI image restoration. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 6, pp. 585–588.Google Scholar
  6. Elad M., Feuer A. (1997) Restoration of single super-resolution image from several blurred, noisy and down-sampled measure images. IEEE Transactions on Image Processing 6(12): 1646–1658CrossRefGoogle Scholar
  7. Geman D., Yang C. (1995) Nonlinear image recovery with half-quadratic regularization. IEEE Transactions on Image Processing 4(7): 932–946CrossRefGoogle Scholar
  8. Kennedy J.A., Israel O., Frenkel A., Bar-Shalom R., Azhari H. (2006) Super-resolution in PET imaging. IEEE Transactions on Medical Imaging 25(2): 137–147CrossRefGoogle Scholar
  9. Kilmer M.E., O’Leary D.P. (2001) Choosing regularization parameters in iterative methods for Ill-posed problems. SIAM Journal on Matrix Analysis and Applications 22(4): 1204–1221MATHCrossRefMathSciNetGoogle Scholar
  10. Lam E.Y. (2003) Noise in superresolution reconstruction. Optics Letters 28(12): 2234–2236CrossRefGoogle Scholar
  11. Lee S.H., Cho N.I., Park J.-I. (2003) Directional regularisation for constrained iterative image restoration. Electronics Letters 39(23): 1642–1643CrossRefGoogle Scholar
  12. Mico V., Zalevsky Z., García J. (2006) Superresolution optical system by common-path interferometry. Optics Express 14(12): 5168–5177CrossRefGoogle Scholar
  13. Ng, M. K., Shen, H., Lam, E., & Zhang, L. (2007). A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP Journal on Advances in Signal Processing, 2007, 1–16, Article ID 74585.Google Scholar
  14. Nikolova, M., & Ng, M. K. (2001). Fast image reconstruction algorithms combining half-quadratic regularization and preconditioning. In Proceedings of International Conference on Image Processing, Vol. 1, pp. 277–280.Google Scholar
  15. Nikolova M., Ng M.K. (2005) Fast image reconstruction algorithms combining half-quadratic regularization and preconditioning. SIAM Journal on Scientific Computing 27: 937–966MATHCrossRefMathSciNetGoogle Scholar
  16. Park S.C., Park M.K., Kang M.G. (2003) Super-resolution image reconstruction: A rechnical overview. IEEE Signal Processing Magazine 20(3): 21–36CrossRefGoogle Scholar
  17. Peled S., Yeshurun Y. (2001) Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging. Magnetic Resonance Imaging 45(1): 29–35Google Scholar
  18. Shin, J.-H., Sun, Y., Joung, W.-C., Paik, J.-K., & Abidi, M. A. (2001). Adaptive regularized noise smoothing of dense range image using directional Laplacian operators. In Proceedings of SPIE Three-Dimensional Image Capture and Applications IV, Vol. 4298, pp. 119–126.Google Scholar
  19. Vanzella W., Pellegrino F.A., Torre V. (2004) Self-adaptive regularization. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6): 804–809CrossRefGoogle Scholar
  20. Wang, Y., Hu, J., & Schroder, H. (2005). A gradient based weighted averaging method for estimation of fingerprint orientation fields. In Proceedings of Digital Image Computing: Techniques and Applications, p. 29.Google Scholar
  21. Watzenig D., Brandstätter B., Holler G. (2004) Adaptive regularization parameter adjustment for reconstruction problems. IEEE Transactions on Magnetics 40(2): 1116–1119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringThe University of Hong KongKowloonHong Kong

Personalised recommendations